Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Comparison of STAR-CCM+ and ANSYS Fluent for simulating indoor airflows

Ying Zou1Xingwang Zhao1Qingyan Chen2,1()
 Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
 School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Show Author Information

Abstract

Suitable air distributions are essential for creating thermally comfortable and healthy conditions in indoor spaces. Computational fluid dynamics (CFD) is widely used to predict air distributions. This study systematically assessed the performance of the two most popular CFD programs, STAR-CCM+ and ANSYS Fluent, in predicting air distributions. The assessment used the same meshes and thermo-fluid boundary conditions for several types of airflow found in indoor spaces, and experimental data from the literature. The programs were compared in terms of grid-independent solutions; turbulent viscosity calculations; heat transfer coefficients as determined by wall functions; and complex flow with complicated boundary conditions. The two programs produced almost the same results with similar computing effort, although ANSYS Fluent seemed slightly better in some aspects.

References

 
AA Ali, AF Elsafty, AA Elsayed (2012). CFD Investigation of indoor air distribution in marine applications. European Journal of Scientific Research, 88:196208.
 
ANSYS (2016). ANSYS Fluent 17.0 Documentation. Lebanon, NH, USA: ANSYS Inc.
 
D Blay, S Mergui, C Niculae (1992). Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. In: TS Chen, TY Chu (eds), Fundamentals of Mixed Convection. New York: American Society of Mechanical Engineers, pp: 6572.
 
A Cablé, G Michaux, C Inard (2012). Addressing summer comfort in low-energy housing using the air vector: A numerical and experimental study. In: Proceedings of the 33rd AIVC Conference, Copenhagen, Denmark, pp. 10–11.
 
CD-adapco (2016). STAR-CCM+ 11.0 User Guide. Melville, NY, USA: CD-adapco Inc.
 
Q Chen, J Srebric (2002). A procedure for verification, validation, and reporting of indoor environment CFD analyses. HVAC & R Research, 8: 201216.
 
Q Chen (1995). Comparison of different k–ε models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28: 353369.
 
Chen Q (2009). Ventilation performance prediction for buildings: A method overview and recent applicationsBuilding and Environment, 44: 848858.10.1016/j.buildenv.2008.05.025
 
TJ Craft, AV Gerasimov, H Iacovides, BE Launder (2002). Progress in the generalization of wall-function treatments. International Journal of Heat and Fluid Flow, 23: 148160.
 
PA Durbin (1991). Near-wall turbulence closure modeling without “damping functions”. Theoretical and Computational Fluid Dynamics, 3: 113.
 
DE Fisher (1995). An experimental investigation of mixed convection heat transfer in a rectangular enclosure. PhD Thesis, University of Illinois at Urbana-Champaign, USA.
 
J Fišer, M Jícha (2013). Impact of air distribution system on quality of ventilation in small aircraft cabin. Building and Environment, 69: 171182.
 
P Kiš, H Herwig (2012). The near wall physics and wall functions for turbulent natural convection. International Journal of Heat and Mass Transfer, 55: 26252635.
 
F Kuznik, J Brau, G Rusaouen (2007). RSM model for the prediction of heat and mass transfer in a ventilated room. In: Proceeding of the 10th International IBPSA Building Simulation Conference, Beijing, China, pp. 919–926.
 
BE Launder, DB Spalding (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3: 269289.
 
N Li (2015). Comparison between three different CFD software and numerical simulation of an ambulance hall. Master Thesis, KTH School of Industrial Engineering and Management Energy Technology, Sweden.
 
W Liu, C-H Lin, J Liu, Q Chen (2011). Simplifying geometry of an airliner cabin for CFD simulations. In: Proceedings of the 12th International Conference on Indoor Air Quality and Climate. Austin, TX, USA.
 
W Liu, S Mazumdar, Z Zhang, SB Poussou, J Liu, C-H Lin, Q Chen (2012a). State-of-the-art methods for studying air distributions in commercial airliner cabins. Building and Environment, 47: 512.
 
W Liu, J Wen, J Chao, W Yin, C Shen, D Lai, C-H Lin, J Liu, H Sun, Q Chen (2012b). Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner. Atmospheric Environment, 56: 3344.
 
S Liu, L Xu, J Chao, C Shen, J Liu, H Sun, S Xiao, G Nan (2013a). Thermal environment around passengers in an aircraft cabin. HVAC & R Research, 19: 627634.
 
W Liu, J Wen, C-H Lin, J Liu, Z Long, Q Chen (2013b). Evaluation of various categories of turbulence models for predicting air distribution in an airliner cabin. Building and Environment, 65: 118131.
 
SV Patankar, DB Spalding (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15: 17871806.
 
D Ružić (2015). Influence of the ventilation system setting in the passenger car on the local thermal sensation of a driver. Isı Bilimi ve Tekniği Dergisi (Journal of Thermal Science and Technology), 35(1): 125134.
 
BP Stephen (2000). Turbulent Flows. Cambridge, UK: Cambridge University Press.
 
FG Schmitt (2007). About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique, 335: 617627.
 
J Srebric, Q Chen (2002). An example of verification, validation, and reporting of indoor environment CFD analyses. ASHRAE Transactions, 108(2): 185194.
 
M Wang, Q Chen (2009). Assessment of various turbulence models for transitional flows in an enclosed environment. HVAC&R Research, 15: 10991119.
 
X Yuan, Q Chen, LR Glicksman, Y Hu, X Yang (1999). Measurements and computations of room airflow with displacement ventilation. ASHRAE Transactions, 105(1): 340352.
Building Simulation
Pages 165-174
Cite this article:
Zou Y, Zhao X, Chen Q. Comparison of STAR-CCM+ and ANSYS Fluent for simulating indoor airflows. Building Simulation, 2018, 11(1): 165-174. https://doi.org/10.1007/s12273-017-0378-8
Metrics & Citations  
Article History
Copyright
Return