AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Comparing reduction of building cooling load through green roofs and green walls by EnergyPlus simulations

Kalani C. DahanayakeCheuk Lun Chow( )
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
Show Author Information

Abstract

Green roofs (GRs) and green walls (GWs) are good strategies for urban greenery. This study explores the cooling load benefits of GRs and GWs simultaneously for comparison. EnergyPlus simulation programme is used for estimating annual cooling load reduction for different buildings and scenarios in Hong Kong. In simulating GR, a built-in thermal model is used. For GWs, a self-developed thermal model is used, which has been developed and validated in our previous study. The simulation covers a single-storey building and two multi-storey buildings, each with four different coverage areas for GR and GWs. The GWs are assumed to be on building facade facing the west, east, north, and south. Results reveal that both GRs and GWs are capable of protecting building envelop from reaching higher temperatures and of reducing cooling load. In a single-storey building with an equal area of GR and GW, GR is more effective in energy saving. However, in a multi-storey building GR can provide energy benefits only to the topmost floor. An equal area of GW can provide benefits to multiple floors, which may result in higher benefit. Furthermore, the available area for GWs is larger. When considering the effect of orientation of GW, the west-facing GW contributes to the highest annual energy saving. It should be noted that the effect of orientation may differ with location and climatic conditions, and also with the shading effect of surrounding buildings. Therefore, installation of GRs or GWs should be considered case by case, taking into consideration the scale and surroundings of the building, the climatic condition, and area of greenery coverage.

References

 
E Alexandri, P Jones (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43: 480–493.
 
U Berardi (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 121: 217–229.
 
JS Carlos (2015). Simulation assessment of living wall thermal performance in winter in the climate of Portugal. Building Simulation, 8: 3–11.
 
Q Chen, B Li, X Liu (2013). An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, 61: 298–307.
 
CY Cheng, KKS Cheung, LM Chu (2010). Thermal performance of a vegetated cladding system on facade walls. Building and Environment, 45: 1779–1787.
 
J Coma, G Pérez, C Solé, A Castell, LF Cabeza (2016). Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, 85: 1106–1115.
 
J Coma, G Pérez, A de Gracia, S Burés, M Urrestarazu, LF Cabeza (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, 111: 228–237.
 
V Costanzo, G Evola, L Marletta (2016). Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy and Buildings, 114: 247–255.
 
E Cuce (2017). Thermal regulation impact of green walls: An experimental and numerical investigation. Applied Energy, 194: 247–254.
 
KWDKC Dahanayake, CL Chow (2015). A brief discussion on current vertical greenery systems in Hong Kong: The way forward. In: Proceedings of the 14th International Conference on Sustainable Energy Technologies (SET2015), Nottingham, UK, pp. 136–147.
 
KWDKC Dahanayake, CL Chow (2017). Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy and Buildings, 138: 47–59.
 
MM Davis, S Hirmer (2015). The potential for vertical gardens as evaporative coolers: An adaptation of the “Penman Monteith Equation.” Building and Environment, 92: 135–141.
 
HF Di, DN Wang (1999). Cooling effect of ivy on a wall. Experimental Heat Transfer, 12: 235–245.
 
R Djedjig, E Bozonnet, R Belarbi (2015). Analysis of thermal effects of vegetated envelopes: Integration of a validated model in a building energy simulation program. Energy and Buildings, 86: 93–103.
 
DOE (2015). EnergyPlus Energy Simulation Software. Available at https://energyplus.net.
 
MY Ferroukhi, R Djedjig, K Limam, R Belarbi (2016). Hygrothermal behavior modeling of the hygroscopic envelopes of buildings: A dynamic co-simulation approach. Building Simulation, 9: 501–512.
 
M Foustalieraki, MN Assimakopoulos, M Santamouris, H Pangalou (2017). Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy and Buildings, 135: 33–38.
 
B Hong, B Lin (2014). Numerical study of the influences of different patterns of the building and green space on micro-scale outdoor thermal comfort and indoor natural ventilation. Building Simulation, 7: 525–536.
 
I Jaffal, S-E Ouldboukhitine, R Belarbi (2012). A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 43: 157–164.
 
P Karachaliou, M Santamouris, H Pangalou (2016). Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 114: 256–264.
 
G Kokogiannakis, J Darkwa, K Yuan (2014). A combined experimental and simulation method for appraising the energy performance of green roofs in Ningbo’s Chinese climate. Building Simulation, 7: 13–20.
 
KJ Kontoleon, EA Eumorfopoulou (2010). The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Building and Environment, 45: 1287–1303.
 
TC Liang, NH Wong, SK Jusuf (2014). Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landscape and Urban Planning, 127: 52–64.
 
L Malys, M Musy, C Inard (2014). A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Building and Environment, 73: 187–197.
 
U Mazzali, F Peron, P Romagnoni, RM Pulsell,S Bastianoni (2013). Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment, 64: 57–66.
 
MV Monteiro, T Blanuša, A Verhoef, P Hadley, RWF Cameron (2016). Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, 64: 32–44.
 
SS Moody, DJ Sailor (2013). Development and application of a building energy performance metric for green roof systems. Energy and Buildings, 60: 262–269.
 
M Moradpour, H Afshin, B Farhanieh (2017). A numerical study of reactive pollutant dispersion in street canyons with green roofs. Building Simulation, .
 
TE Morakinyo, KWDKC Dahanayake, E Ng, CL Chow (2017). Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings, 145: 226–237.
 
S-E Ouldboukhitine, R Belarbi, DJ Sailor (2014). Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings. Applied Energy, 114: 273–282.
 
L Pan, LM Chu (2016). Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Building and Environment, 96: 293–300.
 
G Pérez, J Coma, S Sol, LF Cabeza (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy, 187: 424–437.
 
L Pierangioli, G Cellai, R Ferrise, G Trombi, M Bindi (2017). Effectiveness of passive measures against climate change: Case studies in Central Italy. Building Simulation, 10: 459–479.
 
DJ Sailor (2008). A green roof model for building energy simulation programs. Energy and Buildings, 40: 1466–1478.
 
DJ Sailor, M Hagos (2011). An updated and expanded set of thermal property data for green roof growing media. Energy and Buildings, 43: 2298–2303.
 
M Scarpa, U Mazzali, F Peron (2014). Modeling the energy performance of living walls: Validation against field measurements in temperate climate. Energy and Buildings, 79: 155–163.
 
CM Silva, MG Gomes, M Silva (2016). Green roofs energy performance in Mediterranean climate. Energy and Buildings, 116: 318–325.
 
WJ Stec, AHC van Paassen, A Maziarz (2005). Modelling the double skin facade with plants. Energy and Buildings, 37: 419–427.
 
I Susorova, M Angulo, P Bahrami, B Stephens (2013). A model of vegetated exterior facades for evaluation of wall thermal performance. Building and Environment, 67: 1–13.
 
VWY Tam, J Wang, KN Le (2016). Thermal insulation and cost effectiveness of green-roof systems: An empirical study in Hong Kong. Building and Environment, 110: 46–54.
 
CL Tan, PY Tan, NH Wong, H Takasuna,T Kudo, et al. (2017). Impact of soil and water retention characteristics on green roof thermal performance. Energy and Buildings, 152: 830–842.
 
Y Tian, X Bai, B Qi, L Sun (2017). Study on heat fluxes of green roofs based on an improved heat and mass transfer model. Energy and Buildings, 152: 175–184.
 
NH Wong, Y Chen, CL Ong, A Sia (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38: 261–270.
 
NH Wong, AYK Tan, PY Tan, NC Wong (2009) Energy simulation of vertical greenery systems. Energy and Buildings, 41:1401–1408.
 
NH Wong, AYK Tan, Y Chen, K Sekar, PY Tan, et al. (2010). Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 45: 663–672.
 
C Zeng, X Bai, L Sun, Y Zhang, Y Yuan, et al. (2017). Optimal parameters of green roofs in representative cities of four climate zones in China: A simulation study. Energy and Buildings, 150: 118–131.
Building Simulation
Pages 421-434
Cite this article:
Dahanayake KC, Chow CL. Comparing reduction of building cooling load through green roofs and green walls by EnergyPlus simulations. Building Simulation, 2018, 11(3): 421-434. https://doi.org/10.1007/s12273-017-0415-7

697

Views

43

Crossref

N/A

Web of Science

42

Scopus

0

CSCD

Altmetrics

Received: 17 May 2017
Revised: 14 August 2017
Accepted: 11 September 2017
Published: 20 October 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return