AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Study of an integrated personalized ventilation and local fan-induced active chilled beam air conditioning system in hot and humid climate

Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, 117566, Singapore
Show Author Information

Abstract

A novel integrated personalized ventilation and local fan-induced active chilled beam (PV-ACB) air conditioning system is proposed and analyzed through energy and Computational Fluid Dynamics (CFD) simulation methods. Energy performance and indoor environmental conditions of this system are investigated via Integrated Environmental Solutions (IES) and ANSYS Fluent respectively. Energy simulation results illustrate that PV-ACB system, compared with the conventional variable air volume (VAV) system, could achieve 16% energy savings at 100% peak cooling load. A maximum 42% energy savings is obtained at 25% part cooling load, indicating the superior energy saving potential under part load conditions. Vertical thermal stratification is observed in CFD simulation results, 23 – 24 °C at the occupant level (0 – 2 m) and 26 – 27 °C in the upper zone (2 – 4 m). Horizontally, temperature around occupants is 22 – 23 °C, lower than the temperature of 26 – 27 °C in other areas, demonstrating the horizontal temperature difference caused by the conditioned outdoor air from personalized ventilation. Both energy and CFD simulation results illustrate that this novel PV-ACB air conditioning system is able to achieve considerable energy savings, superior occupant thermal comfort and enhanced indoor air quality (IAQ).

References

 
K Ahmed, J Kurnitski, P Sormunen (2015). Demand controlled ventilation indoor climate and energy performance in a high performance building with air flow rate controlled chilled beams. Energy and Buildings, 109: 115–126.
 
ASHRAE (2016a). ASHRAE Handbook 2016—HVAC System and Equipment. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
 
ASHRAE (2016b). ASHRAE Standard 62.1-2016—Ventilation for Acceptable Indoor Air Quality. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
 
ASHRAE (2017). ASHRAE Handbook 2017—Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
 
BCA (2015). BCA Green Mark for Non-Residential Buildings. Singapore: Building and Construction Authority.
 
A Bastide, P Lauret, F Garde, H Boyer (2006). Building energy efficiency and thermal comfort in tropical climates: Presentation of a numerical approach for predicting the percentage of well-ventilated living spaces in buildings using natural ventilation. Energy and Buildings, 38: 1093–1103.
 
Center for Climate Research Singapore (2016). Annual Climate Assessment 2015. Singapore.
 
R Cermak, AK Melikov, L Forejt, O Kovar (2006). Performance of personalized ventilation in conjunction with mixing and displacement ventilation. HVAC&R Research, 12: 295–311.
 
Q Chen (1995). Comparison of different k-ε models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28: 353–369.
 
Energy Market Authority (2015). Singapore Energy Statistics 2015. Singapore.
 
E Fabrizio, SP Corgnati, F Causone, M Filippi (2012). Numerical comparison between energy and comfort performances of radiant heating and cooling systems versus air systems. HVAC&R Research, 18: 692–708.
 
K Gangisetti, DE Claridge, J Srebric, MT Paulus (2016). Influence of reduced VAV flow settings on indoor thermal comfort in an office space. Building Simulation, 9:101–111.
 
Z Guan, C Wen (2016). Geometric optimization on active chilled beam terminal unit to achieve high entrainment efficiency. Applied Thermal Engineering, 98: 816–826.
 
B Halvoňová, AK Melikov (2010a). Performance of ductless personalized ventilation in conjunction with displacement ventilation: impact of workstations layout and partitions. HVAC&R Research, 16: 75–94.
 
B Halvoňová, AK Melikov (2010b). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person(s). Building and Environment, 45: 427–436.
 
B Halvoňová, AK Melikov (2010c). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of intake height. Building and Environment, 45: 996–1005.
 
ISO (2005). BS EN ISO 7730: Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Standardisation Organisation.
 
Kong M, Zhang J, Wang J (2015). Air and air contaminant flows in office cubicles with and without personal ventilation: A CFD modeling and simulation study. Building Simulation8: 381392.10.1007/s12273-015-0219-6
 
H Koskela, H Häggblom, R Kosonen, M Ruponen (2010). Air distribution in office environment with asymmetric workstation layout using chilled beams. Building and Environment, 45: 1923–1931.
 
H Koskela, H Häggblom, R Kosonen, M Ruponen (2012). Flow pattern and thermal comfort in office environment with active chilled beams. HVAC&R Research, 18: 723–736.
 
R Kosonen, F Tan (2005). A feasibility study of a ventilated beam system in the hot and humid climate: A case-study approach. Building and Environment, 40: 1164–1173.
 
Launder BE, Spalding DB (1974). The numerical computation of turbulent flows. Computer Methods on Applied Mechanics and Engineering3: 269-289.10.1016/0045-7825(74)90029-2
 
R Li, SC Sekhar, AK Melikov (2010). Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate. Building and Environment, 45: 1906–1913.
 
A Lipczynska, J Kaczmarczyk, AK Melikov (2014). Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions. Paper presented at 13th International Conference on Indoor Air Quality and Climate, Hong Kong, China.
 
VS Lyubenova, JW Holsøe, AK Melikov (2011). Potential energy savings with personalized ventilation coupled with passive chilled beams. In: Proceedings of 12th International Conference on Air Distribution in Rooms (RoomVent 2011), Trondheim, Norway.
 
A Maccarini, G Hultmark, A Vorre, A Afshari, NC Bergsøe (2015). Modeling of active beam units with Modelica. Building Simulation, 8: 543–550.
 
A Makhoul, K Ghali, N Ghaddar (2013). Thermal comfort and energy performance of a low-mixing ceiling-mounted personalized ventilator system. Building and Environment, 60: 126–136.
 
DA McIntyre (1980). Indoor Climate. London: Elsevier.
 
F Meggers, J Pantelic, L Baldini, EM Saber, MK Kim (2013). Evaluating and adapting low exergy systems with decentralized ventilation for tropical climates Energy and Buildings, 67: 559–567.
 
A Melikov, T Ivanova, G Stefanova (2012). Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality. Building and Environment, 47: 100–108.
 
S Mirrahimi, MF Mohamed, LC Haw, NLN Ibrahim, WFM Yusoff, A Aflaki (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53: 1508–1519.
 
SA Mumma (2002). Chilled ceilings in parallel with dedicated outdoor air systems: Addressing the concerns of condensation, capacity, and cost. ASHRAE Transactions, 108(2): 220–231.
 
SA Mumma (2010). Dedicated Outdoor Air Systems and Building Pressurization. ASHRAE Transactions, 116(2): 143–153.
 
J Murphy (2009). Role of safety factors in the design of dedicated outdoor-air systems. ASHRAE Transactions, 115(2): 358–368.
 
PV Nielsen (1998). The selection of turbulence models for prediction of room airflow. ASHRAE Transactions, 104(1): 1119–1127.
 
PV Nielsen, NM Bartholomaeussen, E Jakubowska, H Jiang, OT Jonsson, K Krawiecka, A Mierzejewski, S Jessica, K Trampczynska, M Polak (2007). Chair with integrated personalized ventilation for minimizing cross infection. In: Proceedings of 10th International Conference on Air Distribution in Rooms (RoomVent 2007), Helsinki, Finland.
 
A Novoselac, J Srebric (2002). A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems. Energy and Buildings, 34: 497–509.
 
K-N Rhee, M-S Shin, S-H Choi (2015). Thermal uniformity in an open plan room with an active chilled beam system and conventional air distribution systems. Energy and Buildings, 93: 236–248.
 
S Schiavon, AK Melikov (2009). Energy-saving strategies with personalized ventilation in cold climates. Energy and Buildings, 41: 543–550.
 
S Schiavon, AK Melikov, C Sekhar (2010). Energy analysis of the personalized ventilation system in hot and humid climates. Energy and Buildings, 42: 699–707.
 
J-M Seo, D Song, KH Lee (2014). Possibility of coupling outdoor air cooling and radiant floor cooling under hot and humid climate conditions. Energy and Buildings, 81: 219–226.
 
C Shen, N Gao, T Wang (2013). CFD study on the transmission of indoor pollutants under personalized ventilation. Building and Environment, 63: 69–78.
 
SPRING Singapore. (2016). SS 553: 2009—Code of Practice for Air-conditioning and Mechanical Ventilation in Buildings. Singapore.
 
DN Sørensen, PV Nielsen (2003). Quality control of computational fluid dynamics in indoor environments. Indoor Air, 13: 2–17.
 
HK Versteeg, W Malalasekera (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. Harlow, UK: Pearson Education.
 
J Woollett, J Rimmer (2014). Active and Passive Beam Application Design Guide. Brussels: REHVA—Federation of European Heat ing, Vent ilation and Air Conditioning Associations.
 
B Yang, C Sekhar, AK Melikov (2010). Ceiling mounted personalized ventilation system in hot and humid climate—An energy analysis. Energy and Buildings, 42: 2304–2308.
 
B Yang, C Sekhar (2013). Interaction of dynamic indoor environment with moving person and performance of ceiling mounted personalized ventilation system. Indoor and Built Environment, 23: 920–932.
 
C Yang, X Yang, B Zhao (2015). The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation, 8: 551–565.
Building Simulation
Pages 787-801
Cite this article:
Sekhar C, Zheng L. Study of an integrated personalized ventilation and local fan-induced active chilled beam air conditioning system in hot and humid climate. Building Simulation, 2018, 11(4): 787-801. https://doi.org/10.1007/s12273-018-0438-8

610

Views

14

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 31 October 2017
Revised: 12 February 2018
Accepted: 13 February 2018
Published: 10 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return