AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modeling transient particle transport by fast fluid dynamics with the Markov chain method

Wei Liu1,2( )Ruoyu You3Chun Chen4,5( )
School of Civil Engineering, ZJU-UIUC, Zhejiang University, Haining 314400, China
Division of Fluid and Climate Technology, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, Stockholm, 100 44, Sweden
Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong, China
Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
Show Author Information

Abstract

Fast simulation tools for the prediction of transient particle transport are critical in designing the air distribution indoors to reduce the exposure to indoor particles and associated health risks. This investigation proposed a combined fast fluid dynamics (FFD) and Markov chain model for fast predicting transient particle transport indoors. The solver for FFD-Markov-chain model was programmed in OpenFOAM, an open-source CFD toolbox. This study used two cases from the literature to validate the developed model and found well agreement between the transient particle concentrations predicted by the FFD-Markov-chain model and the experimental data. This investigation further compared the FFD-Markov-chain model with the CFD-Eulerian model and CFD-Lagrangian model in terms of accuracy and efficiency. The accuracy of the FFD-Markov-chain model was similar to that of the other two models. For the two studied cases, the FFD-Markov-chain model was 4.7 and 6.8 times faster, respectively, than the CFD-Eulerian model, and it was 137.4 and 53.3 times faster than the CFD-Lagrangian model in predicting the steady-state airflow and transient particle transport. Therefore, the FFD-Markov-chain model is able to greatly reduce the computing cost for predicting transient particle transport in indoor environments.

References

 
AB Bloch, WA Orenstein, WM Ewing, WH Spain, GF Mallison, KL Herrmann, AR Hinman (1985). Measles outbreak in a pediatric practice: Airborne transmission in an office setting. Pediatrics, 75: 676-683.
 
B Blocken (2018). LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Building Simulation, 11: 821-870.
 
DT Bolster, PF Linden (2009). Particle transport in low-energy ventilation systems. Part 2: Transients and experiments. Indoor Air, 19: 130-144.
 
J Boussinesq (1903). Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Vol. 2. Paris: Gauthier-Villars.
 
CYH Chao, MP Wan (2006). A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air, 16: 296-312.
 
C Chen, B Zhao (2010). Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation. Indoor Air, 20: 95-111.
 
C Chen, B Zhao, W Cui, L Dong, N An, X Ouyang (2010). The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics. Journal of The Royal Society Interface, 7: 1105-1118.
 
C Chen, B Zhao (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45: 275-288.
 
C Chen, B Zhao, X Yang (2011a). Preventing the entry of outdoor particles with the indoor positive pressure control method: Analysis of influencing factors and cost. Building and Environment, 46: 1167-1173.
 
C Chen, B Zhao, X Yang (2011b). Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method. Journal of Hazardous Materials, 186: 1290-1299.
 
C Chen, B Zhao, X Yang, X Li (2011c). Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: Revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong. Journal of The Royal Society Interface, 8: 699-710.
 
C Chen, B Zhao, W Zhou, X Jiang, Z Tan (2012a). A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, 47: 339-348.
 
C Chen, B Zhao, CJ Weschler (2012b). Indoor exposure to “outdoor PM10”: Assessing its influence on the relationship between PM10 and short-term mortality in US cities. Epidemiology, 23: 870-878.
 
C Chen, B Zhao, CJ Weschler (2012c). Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in US communities. Environmental Health Perspectives, 120: 235-240.
 
C Chen, W Liu, F Li, C-H Lin, J Liu, J Pei, Q Chen (2013). A hybrid model for investigating transient particle transport in enclosed environments. Building and Environment, 62: 45-54.
 
C Chen, J Zhu, Z Qu, C-H Lin, Z Jiang, Q Chen (2014a). Systematic study of person-to-person contaminant transport in mechanically ventilated spaces (RP-1458). HVAC&R Research, 20: 80-91.
 
C Chen, C-H Lin, Z Jiang, Q Chen (2014b). Simplified models for exhaled airflow from a cough with the mouth covered. Indoor Air, 24: 580-591.
 
C Chen, C-H Lin, Z Long, Q Chen (2014c). Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method, Indoor Air, 24: 81-92.
 
C Chen, W Liu, C-H Lin, Q Chen (2015a). Accelerating the Lagrangian method for modeling transient particle transport in indoor environments. Aerosol Science and Technology, 49: 351-361.
 
C Chen, W Liu, C-H Lin, Q Chen (2015b). A Markov chain model for predicting transient particle transport in enclosed environments. Building and Environment, 90: 30-36.
 
C Chen, W Liu, C-H Lin, Q Chen (2015c). Comparing the Markov chain model with the Eulerian and Lagrangian models for indoor transient particle transport simulations. Aerosol Science and Technology, 49: 857-871.
 
C Chen, B Zhao, D Lai, W Liu (2018). A simple method for differentiating direct and indirect exposure to exhaled contaminants in mechanically ventilated rooms. Building Simulation, 11: 1039-1051.
 
Q Chen (1995). Comparison of different k-ε models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28: 353-369.
 
AD Fontanini, U Vaidya, B Ganapathysubramanian (2015). Constructing Markov matrices for real-time transient contaminant transport analysis for indoor environments. Building and Environment, 94: 68-81.
 
AD Fontanini, U Vaidya, A Passalacqua, B Ganapathysubramanian (2017). Contaminant transport at large Courant numbers using Markov matrices. Building and Environment, 112: 1-16.
 
K Goda (1979). A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows. Journal of Computational Physics, 30: 76-95.
 
JL Guermond, P Minev, J Shen (2006). An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195: 6011-6045.
 
JK Gupta, CH Lin, Q Chen (2011). Inhalation of expiratory droplets in aircraft cabins. Indoor Air, 21: 341-350.
 
H Jasak, A Jemcov, Ž Tuković (2007). OpenFOAM: A C++ library for complex physics simulations. In: Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia.
 
M Jin, W Zuo, Q Chen (2013). Simulating natural ventilation in and around buildings by fast fluid dynamics. Numerical Heat Transfer, Part A: Applications, 64: 273-289.
 
NE Klepeis, WC Nelson, WR Ott, JP Robinson, AM Tsang, P Switzer, JV Behar, SC Hern, WH Engelmann (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science and Environmental Epidemiology, 11: 231-252.
 
AC Lai, Y Tian, JY Tsoi, AR Ferro (2017). Experimental study of the effect of shoes on particle resuspension from indoor flooring materials. Building and Environment, 118: 251-258.
 
BH Lee, SW Yee, DH Kang, MS Yeo, KW Kim (2017). Multi-zone simulation of outdoor particle penetration and transport in a multi-story building. Building Simulation, 10: 525-534.
 
X Li, J Niu, N Gao (2012). Co-occupant’s exposure of expiratory droplets—Effects of mouth coverings. HVAC&R Research, 18: 575-587.
 
W Liu, M Jin, C Chen, R You, Q Chen (2016). Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numerical Heat Transfer, Part A: Applications, 69: 748-762.
 
W Liu, R You, J Zhang, Q Chen (2017). Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments. Journal of Building Performance Simulation, 10: 326-343.
 
W Liu, Q Chen (2018). Development of adaptive coarse grid generation methods for fast fluid dynamics in simulating indoor air flow. Journal of Building Performance Simulation, 11: 470-484.
 
X Mei, G Gong, H Su, P Peng, J Liu, H Xie (2017). A grid-merging operation to accelerate the Markov chain model in predicting steady-state and transient transmission of airborne particles. Building and Environment, 122: 82-93.
 
X Mei, G Gong (2018). Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread. Atmospheric Environment, 185: 137-146.
 
D Menzies, A Fanning, L Yuan, JM FitzGerald (2000). Hospital ventilation and risk for tuberculous infection in Canadian health care workers. Annals of Internal Medicine, 133: 779-789.
 
MR Moser, TR Bender, HS Margolis, GR Noble, AP Kendal, DG Ritter (1979). An outbreak of influenza aboard a commercial airliner. American Journal of Epidemiology, 110: 1-6.
 
X Pan, C Lee, K Kim, JI Choi (2016). Analysis of velocity-components decoupled projection method for the incompressible Navier- Stokes equations. Computers & Mathematics with Applications, 71: 1722-1743.
 
EDL Patino, JA Siegel (2018). Indoor environmental quality in social housing: A literature review. Building and Environment, 131: 231-241.
 
CA Pope, RT Burnett, MJ Thun, EE Calle, D Krewski, K Ito, GD Thurston (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287: 1132-1141.
 
CA Pope, M Ezzati, DW Dockery (2009). Fine-particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360: 376-386.
 
S Seepana, ACK Lai (2012). Experimental and numerical investigation of interpersonal exposure of sneezing in a full-scale chamber. Aerosol Science and Technology, 46: 485-493.
 
S Shi, Y Bian, L Zhang, C Chen (2017). A method for assessing the performance of nanofiber films coated on window screens in reducing residential exposures to PM2.5 of outdoor origin in Beijing. Indoor Air, 27: 1190-1200.
 
BC Singer, RZ Pass, WW Delp, DM Lorenzetti, RL Maddalena (2017). Pollutant concentrations and emission rates from natural gas cooking burners without and with range hood exhaust in nine California homes. Building and Environment, 122: 215-229.
 
M Wang, Q Chen (2009). Assessment of various turbulence models for transitional flows in an enclosed environment (RP-1271). HVAC&R Research, 15: 1099-1119.
 
M Wang, C-H Lin, Q Chen (2012). Advanced turbulence models for predicting particle transport in enclosed environments. Building and Environment, 47: 40-49.
 
M Yao, B Zhao (2017). SOA in newly decorated residential buildings. Building and Environment, 111: 132-139.
 
R You, W Cui, C Chen, B Zhao (2013). Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber. Aerosol and Air Quality Research, 13: 911-921.
 
IT Yu, Y Li, TW Wong, W Tam, AT Chan, JH Lee, DY Leung, T Ho (2004). Evidence of airborne transmission of the severe acute respiratory syndrome virus. The New England Journal of Medicine, 350: 1731-1739.
 
Z Zhang, Q Chen (2007). Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment, 41: 5236-5248.
 
Z Zhang, W Zhang, Z Zhai, Q Chen (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—Comparison with experimental data from literature. HVAC&R Research, 13: 871-886.
 
N Zhang, Z Zheng, S Eckels, VB Nadella, X Sun (2009). Transient response of particle distribution in a chamber to transient particle injection. Particle & Particle Systems Characterization, 26: 199-209.
 
L Zhang, Y Li (2012). Dispersion of coughed droplets in a fully-occupied high-speed rail cabin. Building and Environment, 47: 58-66.
 
B Zhao, C Yang, X Yang, S Liu (2008). Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models. Building and Environment, 43: 388-397.
 
B Zhao, C Chen, Z Tan (2009). Modeling of ultrafine particle dispersion in indoor environments with an improved drift flux model. Journal of Aerosol Science, 40: 29-43.
 
Y Zhao, B Zhao (2018). Emissions of air pollutants from Chinese cooking: A literature review. Building Simulation, 11: 977-995.
 
W Zuo, Q Chen (2009). Real-time or faster-than-real-time simulation of airflow in buildings. Indoor Air, 19: 33-44.
Building Simulation
Pages 881-889
Cite this article:
Liu W, You R, Chen C. Modeling transient particle transport by fast fluid dynamics with the Markov chain method. Building Simulation, 2019, 12(5): 881-889. https://doi.org/10.1007/s12273-019-0513-9

557

Views

20

Crossref

N/A

Web of Science

27

Scopus

6

CSCD

Altmetrics

Received: 05 October 2018
Revised: 18 December 2018
Accepted: 25 December 2018
Published: 06 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return