AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain

Daniel Sánchez-GarcíaCarlos Rubio-Bellido( )Mónica TristanchoMadelyn Marrero
Department of Building Construction II, Universidad de Sevilla, Seville, Spain
Show Author Information

Abstract

In Spain, the current Building Technical Code (referred to as CTE in Spanish) establishes restrictive setpoint temperatures that ensure high levels of thermal comfort but at the expense of high energy demands. However, the strategy to achieve thermal comfort in offices tends towards the adaptive approach, since users manually open windows, control the operation of the air-conditioning systems, and perform adaptation actions in order to achieve adequate levels of well-being. This research develops the adaptive comfort control implemented model (ACCIM), which dynamically handles the setpoint temperatures based on the limits of adaptive comfort, in three representative climatic zones of the Spanish territory, in both the present scenario and future scenarios. This is carried out by following a methodology based on the phases of (i) analysis of climatic zones, (ii) model construction, (iii) data collection, (iv) simulations in the present scenario, (v) simulations in future scenarios, and (vi) analysis of the results of a theoretical model and of a real-life model. Not only do the results indicate that it is possible to reduce the energy demand, by using adaptive setpoint temperatures, up to 69.91% for the least restrictive category and of 31.34% in the category that has the highest level of expectation of the users, but they also show the variations in demand that would occur in possible future climatic scenarios. The application of the study in a real-life case achieves minimum differences of between 3% and 10%, thereby validating the prediction model.

References

 
ANSI/ASHRAE (2014). ASHRAE Guideline 14-2014: Measurement of Energy, Demand, and Water Savings. American National Standards Institute/American Society of Heating Refrigerating and Air-Conditioning Engineers.
 
ANSI/ASHRAE (2017). ANSI/ASHRAE 55:2017: Thermal Environmental Conditions for Human Occupancy. American Society of Heating Refrigerating and Air-Conditioning Engineers.
 
Aparicio-Ruiz P, Barbadilla-Martín E, Salmerón-Lissén JM, Guadix- Martín J (2018). Building automation system with adaptive comfort in mixed mode buildings. Sustainable Cities and Society, 43: 77-85.
 
Arets MJP (2004). Thermische behaaglijkheid: eisen voor de binnentemperatuur in gebouwen: een nieuwe richtlijn voor thermische behaaglijkheid in (kantoor)gebouwen. ISSO.
 
Barbadilla-Martín E, Salmerón Lissén JM, Guadix Martín J, Aparicio- Ruiz P, Brotas L (2017). Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain. Building and Environment, 123: 163-175.
 
Barbadilla-Martín E, Guadix Martín J, Salmerón Lissén JM, Sánchez Ramos J, Álvarez Domínguez S (2018). Assessment of thermal comfort and energy savings in a field study on adaptive comfort with application for mixed mode offices. Energy and Buildings, 167: 281-289.
 
CEN (2007). EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings— Addressing indoor air quality, thermal environment, lighting and acoustics. European Standard.
 
Código técnico de la Edificación (2013). Documento básico HE ahorro de energía. In: Doc. básico HE Ahorr. energía.
 
Código técnico de la Edificación (2015). Documento básico HE Climas de referencia.
 
Damiati SA, Zaki SA, Rijal HB, Wonorahardjo S (2016). Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment, 109: 208-223.
 
de Dear RJ, Brager GS (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34: 549-561.
 
Decreto (2018). Proyecto de Real Decreto por el que se modifica el RD 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación Versión para trámite de audiencia e información pública.
 
European Commision (2002). Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Brussels: European Commision.
 
European Commission (2008). Europe’s climate change opportunity. Brussels: European Commision.
 
European Commision (2014). A policy framework for climate and energy in the period from 2020 to 2030. Brussels: European Commision.
 
European Union (2018). Directive 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.
 
Fanger PO (1967). Calculation of thermal comfort: Introduction of a basic comfort equation. ASHRAE Transactions, 73(2): III4.1-III4.20.
 
Gobierno de España (2006). Royal Decree 314/2006 approving the Technical Building Code (Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación. Imprenta Nacional del Boletín Oficial del Estado, Madrid, España.
 
de España Gobierno (2007). Royal Decree 1027/2007 approving the Spanish Thermal Building Regulations (Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Termicas en los Edificios). Imprenta Nacional del Boletín Oficial del Estado.
 
Jentsch MF, Bahaj AS, James PAB (2013). CCWorldWeatherGen, Climate Change World Weather File Generator, Version 1.8. Sustainable Energy Research Group, The University of Southampton.
 
Kramer RP, Maas MPE, Martens MHJ, van Schijndel AWM, Schellen HL (2015). Energy conservation in museums using different setpoint strategies: A case study for a state-of-the-art museum using building simulations. Applied Energy, 158: 446-458.
 
Luo M, Wang Z, Brager G, Cao B, Zhu Y (2018). Indoor climate experience, migration, and thermal comfort expectation in buildings. Building and Environment, 141: 262-272.
 
McCartney KJ, Nicol JF (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings, 34: 623-635.
 
Ministerio de la Presidencia (2007). RITE 2007. Reglamento de instalaciones térmicas en los edificios. Bol Of del estado.
 
Ministerio de Industria Energía y Turismo (2015). Condiciones técnicas de los procedimientos para la evaluación de la eficiencia energética de los edificios.
 
Morgan CA, de Dear R, Brager G (2002). Climate Clothing and adaptation in the built environment. In: Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Montere, CA, USA.
 
Parsons KC (2002). The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort. Energy and Buildings, 34: 593-599.
 
Pérez-Fargallo A, Rubio-Bellido C, Pulido-Arcas JA, Trebilcock M (2017). Development policy in social housing allocation: Fuel poverty potential risk index. Indoor and Built Environment, 26: 980-998.
 
Pérez-Fargallo A, Rubio-Bellido C, Pulido-Arcas JA, Javier Guevara- García F (2018). Fuel poverty potential risk index in the context of climate change in Chile. Energy Policy, 113: 157-170.
 
Rijal HB, Tuohy P, Humphreys MA, Nicol JF, Samuel A, Clarke J (2007). Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy and Buildings, 39: 823-836.
 
Rubel F, Kottek M (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19: 135-141.
 
Sánchez-Guevara Sánchez C, Mavrogianni A, Neila González FJN (2017). On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Building and Environment, 114: 344-356.
 
Sánchez-Guevara Sánchez C, González FJN, Aja AH (2018). Energy poverty methodology based on minimal thermal habitability conditions for low income housing in Spain. Energy and Buildings, 169: 127-140.
 
Sánchez-García D, Rubio-Bellido C, del Río JJM, Pérez-Fargallo A (2019). Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change. Energy and Buildings, 187: 173-185.
 
Spyropoulos GN, Balaras CA (2011). Energy consumption and the potential of energy savings in Hellenic office buildings used as bank branches—A case study. Energy and Buildings, 43: 770-778.
 
van der Linden AC, Boerstra AC, Raue AK, Kurvers SR, de Dear RJ (2006). Adaptive temperature limits: A new guideline in the Netherlands. Energy and Buildings, 38: 8-17.
 
Yun GY, Lee JH, Steemers K (2016). Extending the applicability of the adaptive comfort model to the control of air-conditioning systems. Building and Environment, 105: 13-23.
Building Simulation
Pages 51-63
Cite this article:
Sánchez-García D, Rubio-Bellido C, Tristancho M, et al. A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain. Building Simulation, 2020, 13(1): 51-63. https://doi.org/10.1007/s12273-019-0560-2

545

Views

28

Crossref

N/A

Web of Science

36

Scopus

3

CSCD

Altmetrics

Received: 25 February 2019
Accepted: 16 May 2019
Published: 27 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return