AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multivariable optimization of PCM-enhanced radiant floor of a highly glazed study room in cold climates

Ali MohammadzadehMiroslava Kavgic( )
Civil Engineering, University of Manitoba, 15 Gillson St., Winnipeg, Manitoba, Canada, 3RT 5V6
Show Author Information

Abstract

Hydronic radiant floor systems enhanced with phase change materials (PCMs) could achieve significant energy savings while improving the thermal comfort of occupants in lightweight buildings. However, successful integration of PCMs typically requires comprehensive numerical analysis due to their complex nature. This study aims to investigate two scenarios for optimal integration of PCM into the hydronic floor heating system of a highly glazed study room exposed to cold weather conditions. Scenario 1 includes optimization of two design variables, including PCM melting temperature and thickness. Scenario 2 encompasses optimization of seven design variables, including PCM melting temperature and thickness, insulation thickness and thermal conductivity, floor thickness, thermal conductivity, and solar absorbance. Both scenarios are optimized for the six supply water temperatures, ranging from 35.6 °C to 45.6 °C with a 2 °C step. The overall findings suggest that successful integration of PCMs into the hydronic heating system requires a comprehensive solution tailored for the specific application. Thus, scenario 1 and scenario 2 achieved the highest total energy savings of approximately 17.7% and 20.5% for the lowest supply water temperature of 35.6 °C, whereas under both scenarios the supply water temperature of 43.6 °C provided the best thermal comfort. Furthermore, scenario 1 achieved more substantial cooling energy savings over the wider temperature range (41.6–35.6 °C) compared to scenario 2 (39.6–35.6 °C). The findings also suggest that the addition of the insulation layer in the second scenario reduced the thickness of PCM and payback period for more than 70% compared to the first scenario.

References

 
Al-Janabi A, Kavgic M (2019). Application and sensitivity analysis of the phase change material hysteresis method in EnergyPlus: A case study. Applied Thermal Engineering, 162: 114222.
 
Al-Janabi A, Kavgic M, Mohammadzadeh A, Azzouz A (2019). Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed. Journal of Building Engineering, 22: 262-280.
 
Alizadeh M, Sadrameli SM (2016). Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations—A review. Renewable and Sustainable Energy Reviews, 58: 619-645.
 
Asadi I, Shafigh P, Abu Hassan ZFB, Mahyuddin NB (2018). Thermal conductivity of concrete—A review. Journal of Building Engineering, 20: 81-93.
 
ASHRAE (2017). ASHRAE Standard 55–2017. Thermal environmental Conditions for Human Occupanc. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
 
Ascione F, Bianco N, de Masi RF, de Rossi F, Vanoli GP (2014). Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season. Applied Energy, 113: 990-1007.
 
Berardi U, Soudian S (2018). Benefits of latent thermal energy storage in the retrofit of Canadian high-rise residential buildings. Building Simulation, 11: 709-723.
 
Baniassadi A, Sajadi B, Amidpour M, Noori N (2016). Economic optimization of PCM and insulation layer thickness in residential buildings. Sustainable Energy Technologies and Assessments, 14: 92-99.
 
Cabeza LF (2014). Advances in Thermal Energy Storage Systems: Methods and Applications. Kidlington, UK: Woodhead Publishing.
 
Cabeza LF, de Gracia A (2015). Thermal energy storage (TES) systems for cooling in residential buildings. In: Cabeza LF (ed), Advances in Thermal Energy Storage Systems: Methods and Applications. Kidlington, UK: Woodhead Publishing. pp. 549–572.
 
Caldas LG, Norford LK (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11: 173-184.
 
Chen X, Zhang Q, Zhai ZJ, Ma X (2019). Optimization and sensitivity analysis of design parameters for a ventilation system using phase change materials. Building Simulation, 12: 961-971.
 
CWEC (2017). Canadian Climate Normals 1981–2010 Station Data.
 
Devaux P, Farid MM (2017). Benefits of PCM underfloor heating with PCM wallboards for space heating in winter. Applied Energy, 191: 593-602.
 
Djuric N, Novakovic V, Holst J, Mitrovic Z (2007). Optimization of energy consumption in buildings with hydronic heating systems considering thermal comfort by use of computer-based tools. Energy and Buildings, 39: 471-477.
 
EnergyPlus (2010). Engineering Reference. US Department of Energy.
 
Farid MM, Chen XD (1999). Domestic electrical space heating with heat storage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 213: 83-92.
 
Farid M, Kong WJ (2001). Underfloor heating with latent heat storage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215: 601-609.
 
Firth SK, Lomas KJ, Wright AJ (2010). Targeting household energy-efficiency measures using sensitivity analysis. Building Research & Information, 38: 25-41.
 
Heim D, Clarke JA (2004). Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r. Energy and Buildings, 36: 795-805.
 
Hoes P, Trcka M, Hensen JLM, Hoekstra Bonnema B (2011). Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage. Energy Conversion and Management, 52: 2442-2447.
 
Homewyse (2019). Average insulation price. Available at https://www.homewyse.com/services/cost_to_insulate_your_home.html.
 
Hu R, Niu JL (2012). A review of the application of radiant cooling & heating systems in Mainland China. Energy and Buildings, 52: 11-19.
 
Kendrick C, Walliman N (2007). Removing unwanted heat in lightweight buildings using phase change materials in building components: simulation modelling for PCM plasterboard. Architectural Science Review, 50: 265-273.
 
Kong X, Yao C, Jie P, Liu Y, Qi C, Rong X (2017). Development and thermal performance of an expanded perlite-based phase change material wallboard for passive cooling in building. Energy and Buildings, 152: 547-557.
 
Kosny J, Shukla N, Fallahi A (2012). Cost analysis of simple PCM-enhanced building envelopes in southern US climates. Report submitted to Building Technologies Program-Building America Project, US DOE.
 
Kośny J (2015). PCM-enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures. Cham, Switzerland: Springer International Publishing.
 
Kragh M (2001). Monitoring of Advanced Facades and Environmental Systems. Paper prsented at Whole-life Performance of Facades, CWCT, Bath, UK.
 
Kuznik F, Virgone J, Noel J (2008). Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28: 1291-1298.
 
Li Q, Chen C, Zhang Y, Lin J, Ling H, Ma Y (2014). Analytical solution for heat transfer in a multilayer floor of a radiant floor system. Building Simulation, 7: 207-216.
 
Lin K, Zhang Y, Di H, Dong J, Yang R, Xu X (2005a). Experimental study of underfloor electric heating system with latent thermal storage air supply. Acta Energiae Solaris Sinica, 26(6): 820-824. (in Chinese)
 
Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P (2005b). Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy and Buildings, 37: 215-220.
 
Lin K, Zhang Y, Di H, Yang R (2007). Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage. Energy Conversion and Management, 48: 2016-2024.
 
Liu J, Dalgo DA, Zhu S, Li H, Zhang L, Srebric J (2019). Performance analysis of a ductless personalized ventilation combined with radiant floor cooling system and displacement ventilation. Building Simulation, 12: 905-919.
 
PureTemp (2019). Available at http://www.puretemp.com/stories/contact-us.
 
Lomas KJ, Eppel H (1992). Sensitivity analysis techniques for building thermal simulation programs. Energy and Buildings, 19: 21-44.
 
Manitoba Hydro (2019). Manitoba Hydro Energy Cost Rate. Available at https://www.hydro.mb.ca/accounts_and_services/rates/commercial_rates/#ng-hvf.
 
Marin P, Saffari M, de Gracia A, Zhu X, Farid MM, Cabeza LF, Ushak S (2016). Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, 129: 274-283.
 
Navarro L, de Gracia A, Niall D, Castell A, Browne M, McCormack SJ, Griffiths P, Cabeza LF (2016). Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, 85: 1334-1356.
 
Nguyen AT, Reiter S, Rigo P (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113: 1043-1058.
 
Olesen BW (2002). Radiant floor heating in theory and practice, ASHRAE Journal, 44(7): 19-26.
 
Osterman E, Butala V, Stritih U (2015). PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy and Buildings, 106: 125-133.
 
Rauf A, Crawford RH (2015). Building service life and its effect on the life cycle embodied energy of buildings. Energy, 79: 140-148.
 
Rossi M (2011). Innovative façades lightweight and thin systems with high inertia for the thermal comfort application in office buildings in southern Europe. Journal of Green Building, 6: 107-121.
 
Saffari M, de Gracia A, Fernández C, Cabeza LF (2017). Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, 202: 420-434.
 
Saltelli A, Chan K, Scott M (2000). Sensitivity Analysis: Gauging the Worth of Scientific Models. New York: John Wiley and Sons.
 
Solgi E, Memarian S, Nemati Moud G (2018). Financial viability of PCMs in countries with low energy cost: A case study of different climates in Iran. Energy and Buildings, 173: 128-137.
 
Solgi E, Hamedani Z, Fernando R, Mohammad Kari B, Skates H (2019). A parametric study of phase change material behaviour when used with night ventilation in different climatic zones. Building and Environment, 147: 327-336.
 
Song M, Niu F, Mao N, Hu Y, Deng S (2018). Review on building energy performance improvement using phase change materials. Energy and Buildings, 158: 776-793.
 
Souayfane F, Fardoun F, Biwole PH (2016). Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings, 129: 396-431.
 
Tabares-Velasco PC, Christensen C, Bianchi M, Booten C (2012). Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies. National Renewable Energy Laboratory.
 
Tian Z, Love JA (2009). Energy performance optimization of radiant slab cooling using building simulation and field measurements. Energy and Buildings, 41: 320-330.
 
Vakilaltojjar SM, Saman W (2001). Analysis and modelling of a phase change storage system for air conditioning applications. Applied Thermal Engineering, 21: 249-263.
 
Yao C, Kong X, Li Y, Du Y, Qi C (2018). Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building. Energy Conversion and Management, 155: 20-31.
 
Zhang Y, Zhou G, Lin K, Zhang Q, Di H (2007). Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment, 42: 2197-2209.
 
Zhao K, Liu X, Jiang Y (2013). Application of radiant floor cooling in a large open space building with high-intensity solar radiation. Energy and Buildings, 66: 246-257.
 
Zhou G, Yang Y, Wang X, Zhou S (2009). Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Applied Energy, 86: 52-59.
 
Zhou D, Shire GSF, Tian Y (2014). Parametric analysis of influencing factors in phase change material wallboard (PCMW). Applied Energy, 119: 33-42.
Building Simulation
Pages 559-574
Cite this article:
Mohammadzadeh A, Kavgic M. Multivariable optimization of PCM-enhanced radiant floor of a highly glazed study room in cold climates. Building Simulation, 2020, 13(3): 559-574. https://doi.org/10.1007/s12273-019-0592-7

579

Views

17

Crossref

N/A

Web of Science

18

Scopus

3

CSCD

Altmetrics

Received: 18 August 2019
Accepted: 04 November 2019
Published: 06 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return