AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effects of urban square entry layouts on spatial ventilation under different surrounding building conditions

Wei You( )Wowo Ding
School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China
Show Author Information

Abstract

Effective urban square ventilation is important for the living comfortand health of residents. This research aims to establish some principles of street entry layouts for urban square ventilation optimization. Using computational fluid dynamics (CFD) simulation techniques, two types of street entry squares (two-intersection and four-intersection) were investigated under the effect of surrounding buildings. Three indices—the spatial mean velocity (<V*>), air change rate (ACH) and mean flow rates (<Q>) through the street entry and square roof—were calculated to quantify the square ventilation performance. The simulation results indicate that the surrounding buildings could influence the square space ventilation. When the surrounding building conditions change to a building coverage ratio of 0.25, the <Q> entering through the street entry can be reduced by 35%, and the <V*> within the square decreases by more than 45%. The optimal street entry layout design depends greatly on the wind direction. When the wind direction is perpendicular to the square street entry, the corner oblique-entry layout square shows a better ventilation performance than the other designs. When the wind direction is oblique to the square street entry, the <V*> declines greatly (up to 68%), and the lateral-entry layout design shows the best ventilation performance.

Electronic Supplementary Material

Download File(s)
12273_2020_656_MOESM1_ESM.pdf (1.4 MB)

References

 
Architectural Institute of Japan (2020). Validation benchmark tests. In: Guidebook for CFD Predictions of Urban Wind Environment. Architectural Institute of Japan. Available at https://www.aij.or.jp/ jpn/publish/cfdguide/index_e.htm. Accessed 20 Feb 2020.
 
Asfour OS(2010). Prediction of wind environment in different grouping patterns of housing blocks. Energy and Buildings, 42: 2061-2069.
 
Bady M, Kato S, Huang H(2008). Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas. Building and Environment, 43: 1991-2004.
 
Balczó M, Tomor A(2015). Wind tunnel and computational fluid dynamics study of wind conditions in an urban square. Quarterly Journal of the Hungarian Meteorological Service, 120: 199-229
 
Blocken B, Stathopoulos T, Carmeliet J, Hensen JLM(2011). Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, 4: 157-184.
 
Blocken B, Stathopoulos T, van Beeck JPAJ(2016). Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Building and Environment, 100: 50-81.
 
Blocken B(2018). LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Building Simulation, 11: 821-870.
 
Buccolieri R, Sandberg M, di Sabatino S(2010). City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmospheric Environment, 44: 1894-1903.
 
Buccolieri R, Salizzoni P, Soulhac L, Garbero V, di Sabatino S(2015). The breathability of compact cities. Urban Climate, 13: 73-93.
 
Chatzidimitriou A, Yannas S(2016). Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26: 27-47.
 
Chen L, Hang J, Sandberg M, Claesson L, di Sabatino S, Wigo H(2017). The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Building and Environment, 118: 344-361.
 
Erell E, Pearlmutter D, Williamson T(2011). Urban Microclimate: Designing the Spaces Between Buildings. Abingdon, UK: Routledge.
 
Franke J, Hellsten A, Schlünzen H, Carissimo B(2007). Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. Brussels: COST Office.
 
Gadilhe A, Janvier L, Barnaud G(1993). Numerical and experimental modelling of the three-dimensional turbulent wind flow through an urban square. Journal of Wind Engineering and Industrial Aerodynamics, 46-47: 755-763.
 
Hang J, Sandberg M, Li Y(2009). Age of air and air exchange efficiency in idealized city models. Building and Environment, 44: 1714-1723.
 
Hang J, Li Y, Sandberg M, Claesson L(2010). Wind conditions and ventilation in high-rise long street models. Building and Environment, 45: 1353-1365.
 
Hang J, Wang Q, Chen X, Sandberg M, Zhu W, Buccolieri R, di Sabatino S(2015). City breathability in medium density urban-like geometries evaluated through the pollutant transport rate and the net escape velocity. Building and Environment, 94: 166-182.
 
He Y, Tablada A, Wong NH(2019). A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas. Building and Environment, 151: 251-267.
 
Hong B, Lin B(2015). Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renewable Energy, 73: 18-27.
 
Hong B, Qin H, Lin B(2018). Prediction of wind environment and indoor/outdoor relationships for PM2.5 in different building-tree grouping patterns. Atmosphere, 9: 39.
 
Kariminia S, Ahmad SS, Saberi A(2015). Microclimatic conditions of an urban square: role of built environment and geometry. Procedia-Social and Behavioral Sciences, 170: 718-727.
 
Krier R, Rowe C(1979). Urban Space. London: Academy Editions.
 
Lin M, Hang J, Li Y, Luo Z, Sandberg M(2014). Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Building and Environment, 79: 152-167.
 
Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J(2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1: 197-228.
 
Ng E(2009). Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44: 1478-1488.
 
Ng E, Yuan C, Chen L, Ren C, Fung JCH(2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101: 59-74.
 
Parra MA, Santiago JL, Martín F, Martilli A, Santamaría JM(2010). A methodology to urban air quality assessment during large time periods of winter using computational fluid dynamic models. Atmospheric Environment, 44: 2089-2097.
 
Ramponi R, Blocken B, de Coo LB, Janssen WD(2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92: 152-166.
 
Shui T, Liu J, Yuan Q, Qu Y, Jin H, Cao J, Liu L, Chen X(2018). Assessment of pedestrian-level wind conditions in severe cold regions of China. Building and Environment, 135: 53-67.
 
Stathopoulos T(1997). Computational wind engineering: Past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, 67-68: 509-532.
 
Tominaga Y, Mochida A, Shirasawa T, Yoshie R, Kataoka H, Harimoto K, Nozu T(2004). Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. Journal of Asian Architecture and Building Engineering, 3: 63-70.
 
Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T(2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96: 1749-1761.
 
Tominaga Y, Stathopoulos T(2010). Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Building and Environment, 45: 2231-2239.
 
Yoshie R, Mochida A, Tominaga Y, Kataoka H, Harimoto K, Nozu T, Shirasawa T(2007). Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95: 1551-1578.
 
You W, Gao Z, Chen Z, Ding W(2017). Improving residential wind environments by understanding the relationship between building arrangements and outdoor regional ventilation. Atmosphere, 8: 102.
 
Yuan C, Ng E(2012). Building porosity for better urban ventilation in high-density cities—A computational parametric study. Building and Environment, 50: 176-189.
 
Yuan C, Norford L, Britter R, Ng E(2016). A modelling-mapping approach for fine-scale assessment of pedestrian-level wind in high-density cities. Building and Environment, 97: 152-165.
 
Zeng S, Tian J, Zeng J(2019). A study on ventilation efficiency and optimal layout of typical residential modules based on CFD simulation. Architectural Journal, 2019(2): 24-30. (In Chinese)
 
Zhang K, Chen G, Wang X, Liu S, Mak CM, Fan Y, Hang J(2019). Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Science of the Total Environment, 653: 968-994.
Building Simulation
Pages 377-390
Cite this article:
You W, Ding W. Effects of urban square entry layouts on spatial ventilation under different surrounding building conditions. Building Simulation, 2021, 14(2): 377-390. https://doi.org/10.1007/s12273-020-0656-8

585

Views

17

Crossref

N/A

Web of Science

17

Scopus

2

CSCD

Altmetrics

Received: 31 January 2020
Accepted: 28 April 2020
Published: 07 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return