Abstract
Large metro transfer stations have been widely constructed in China, among which the double-island station faces the serious fire safety issues owing to its large passenger flow. In this paper, simulation cases were carried out to investigate the effectiveness of different ventilation modes by jointly operating tunnel ventilation fan (TVF) and platform screen doors (PSD) under two typical fire scenarios in the platform. The numerical model was established by Fire Dynamics Simulator software and verified via reduced-scale model experiments. The results indicate that the TVF mode of supplying at the end near fire and exhausting at the other end is superior to that of exhausting at both ends. Besides, activating more PSD and TVF on the both sides of platform will restrict smoke in one end to the greater extent. During a fire in the middle of the platform, opening all PSD near tunnel-2 and TVF in tunnel-2 and tunnel-3 is the most appropriate mode. While during a fire at the left end of the platform, activating all PSD and TVF on both sides is the optimal operation mode. The conclusions can provide guidance for smoke control design and on-site emergency ventilation operation in double-island platform fire.