Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carboxylic acid-functionalized single walled carbon nanotubes (SWNTs) prepared via the reaction of an amino acid, NH2(CH2)nCO2H where n = 1 (glycine, GLY), 5 (6-aminohexanoic acid, AHA), 10 (11-aminoundecanoic acid, AUDA), with fluorinated single walled carbon nanotubes (F-SWNTs) have been characterized by MAS 13C NMR spectroscopy. The ease of observing the aliphatic CH2 groups and the resolution of the signal are dependent on the length of the amino acid's aliphatic chain. We have proposed that where substituent chains are short (making NMR data collection difficult) chemical modification to extend the chain length should alleviate analysis problems. In this regard, we have investigated the esterification of the carboxylic acid termini. The amino acid-functionalized SWNTs were esterified with an appropriate alcohol to ensure parity of the overall substituent length, i.e., GLY-SWNT (C1) + 1-dodecanol (C12) = DOD-GLY-SWNT (1), AHA-SWNT (C5) + 1-octanol (C8) = OCT-AHA-SWNT (2), and AUDA-SWNT (C10) + 1-propanol (C3) = PRO-AUDA-SWNT (3). The 13C NMR shift for the sp3 nitrogen-substituted carbon atoms of the SWNT sidewall is observed at δ ≈ 75 ppm. Increasing the length of SWNT sidewall functional groups enhances the ability to observe the sidewall sp3 carbon. The methylene carbon signal intensity is less attenuated in the dipolar dephasing spectrum of the ester-functionalized SWNTs than their associated amino acid derivatives, suggesting more motional freedom of the side chain in the solid state. The confirmation of the dipolar dephasing spectral effects was assisted by the characterization of the ester of AUDA-SWNT with 1, 3-propanediol: PPD-AUDA-SWNT (4).
Lichtenberger, D. L.; Hogan, R. H.; Healy, M. D.; Barron, A. R. Electronic structure and bonding in four-coordinate organometallic complexes of aluminum. Valence photoelectron spectra of BHT-H, Me3Al(PMe3), and Me2(BHT) Al (PMe3). J. Am. Chem. Soc. 1990, 112, 3369–3374.
Lichtenberger, D. L.; Hogan, R. H.; Healy, M. D.; Barron, A. R. Electronic structure and bonding in four-coordinate organometallic complexes of aluminum. Valence photoelectron spectra of Me3Al(pyridine) and Me2(BHT) Al(pyridine) (BHT=2, 6-di-tert-butyl-4-methylphenoxide). Organometallics. 1991, 10, 609–614.
Healy, M. D.; Ziller, J. W.; Barron, A. R. Bonding in four-coordinate aluminum aryloxide compounds. J. Am. Chem. Soc. 1990, 112, 2949–2954.
Barron, A. R.; Dobbs, K. D.; Francl, M. M. Theoretical investigation of aluminum-oxygen π-bonding in 3- and 4-coordinate aluminum alkoxides. J. Am. Chem. Soc. 1991, 113, 39–43.
Francis, J. A.; McMahon, C. N.; Bott, S. G.; Barron, A. R. Steric effects in aluminum compounds containing monoanionic potentially bidentate ligands: Toward a quantitative measure of steric bulk. Organometallics 1999, 18, 4399–4416.
Apblett, A. W.; Warren, A. C.; Barron, A. R. Synthesis and characterization of triethylsiloxy-substituted alumoxanes: Their structural relationship to the minerals boehmite and diaspore. Chem. Mater. 1992, 4, 167–182.
Bethley, C. E.; Aitken, C. L.; Koide, Y.; Harlan, C. J.; Bott, S. G.; Barron, A. R. Structural characterization of dialkylaluminum carboxylates: Models for carboxylate alumoxanes. Organometallics 1997, 16, 329–341.
Koide, Y.; Barron, A. R. [Al5(tBu)5(μ3-O)2(μ3-OH)2(μ-OH)2(μ-O2CPh)2]: A model for the interaction of carboxylic acids with boehmite. Organometallics 1995, 14, 4026–4029.
Zeng, L.; Zhang, L.; Barron, A. R. Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett. 2005, 5, 2001–2004.
Zhang, L.; Zeng, L.; Barron, A. R.; Monteiro-Riviere, N. A. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicol. 2007, 26, 103–113.
Dillon, E. P.; Crouse, C. A.; Barron, A. R. Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano 2008, 2, 156–164.
Alemany, L. B.; Zeng, L.; Zhang, L.; Edwards, C. L.; Barron, A. R. Solid-state NMR analysis of fluorinated single-walled carbon nanotubes: Assessing the extent of fluorination. Chem. Mater. 2007, 19, 735–744.
Zhang, L.; Yang, J.; Edwards, C. L.; Alemany, L. B.; Khabashesku, V. N.; Barron, A. R. Diels-Alder addition to fluorinated single walled carbon nanotubes. Chem. Commun. 2005, 26, 3265–3267.
Zurek, E.; Autschbach, J. Density functional calculations of the 13C NMR chemical shifts in (9, 0) single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 13079–13088.
Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B 1999, 103, 4318–4322.
Kitaygorodskiy, A.; Wang, W.; Xie, S. -Y.; Lin, Y.; Fernando, K. A. S.; Wang, X.; Qu, L.; Chen, B.; Sun, Y. -P. NMR detection of single-walled carbon nanotubes in solution. J. Am. Chem. Soc. 2005, 127, 7517–7520.
Cahill, L. S.; Yao, Z.; Adronov, A.; Penner, J.; Moonoosawmy, K. R.; Kruse, P.; Goward, G. R. Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 11412–11418.
Bac, C. G.; Bernier, P.; Latil, S.; Jourdain, V.; Rubio, A.; Jhang, S. H.; Lee, S. W.; Park, Y. W.; Holzinger, M.; Hirsch, A. 13C NMR investigation of carbon nanotubes and derivatives. Curr. Appl. Phys. 2001, 1, 149–155.
Peng, H.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 15174–15182.
Liang, F.; Alemany, L. B.; Beach, J. M.; Billups, W. E. Structure analyses of dodecylated single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 13941–13948.
Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301.
Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 1998, 296, 188–194.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Yazyev, O., et al. Gaussian 03, Revision 02; Gaussian Inc. : Wallingford, CT, 2004.
Ashcroft, J. M.; Hartman, K. B.; Mackeyev, Y.; Hofmann, C.; Pheasant, S.; Alemany, L. B.; Wilson, L. J. Functionalization of individual ultra-short single-walled carbon nanotubes. Nanotechnology 2006, 17, 5033–5037.
Bielecki, A.; Burum, D. P. Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J. Magn. Reson. A 1995, 116, 215–210.
Engtrakul, C.; Davis, M. F.; Gennett, T.; Dillon, A. C.; Jones, K. M.; Heben, M. J. Protonation of carbon single-walled nanotubes studied using 13C and 1H–13C cross polarization nuclear magnetic resonance and raman spectroscopies. J. Am. Chem. Soc. 2005, 127, 17548–17555.
Opella, S. J.; Frey, M. H.; Cross, T. A. Detection of individual carbon resonances in solid proteins. J. Am. Chem. Soc. 1979, 101, 5856–5857.
Alemany, L. B.; Grant, D. M.; Alger, T. D.; Pugmire, R. J. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 3. Effect of the carbon-13-proton dipolar interaction on cross polarization and carbon-proton dephasing. J. Am. Chem. Soc. 1983, 105, 6697–6704.
Groombridge, C. J.; Harris, R. K.; Packer, K. J.; Say, B. J.; Tanner, S. F. High-resoldution carbon-13 NMR spectra of solid nitrogen-containing compound. J. Chem. Soc., Chem. Commun. 1980, 4, 174–175.
Frey, M. H.; Opella, S. J. High-resolution features of the carbon-13 NMR spectra of solid amino acids and peptides. J. Chem. Soc., Chem. Commun. 1980, 11, 474–475.
Hexem, J. G.; Frey, M. H.; Opella, S. J. Influence of nitrogen-14 on carbon-13 NMR spectra of solids. J. Am. Chem. Soc. 1981, 103, 224–226.
Naito, A.; Ganapathy, S.; McDowell, C. A. High resolution solid state carbon-13 NMR spectra of carbons bonded to nitrogen in a sample spinning at the magic angle. J. Chem. Phys. 1981, 74, 5393–5397.
Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 2002, 4, 366–367.
Hayashi, S.; Hayamizu, K. Chemical shift standards in high-resolution solid-state NMR. 1. Carbon-13, silicon-29, and proton nuclei. Bull. Chem. Soc. Jpn. 1991, 64, 685–687.
Alemany, L. B. Ph. D. Dissertation, Investigations on the Reactivity and Organic Structure of Illinois No. 6 Coal, University of Chicago, USA, 1980.
Kampe, K. -D.; Egger, N.; Vogel, M. Diamino and tetraamino derivatives of buckminsterfullerene C60. Angew. Chem. Int. Ed. 1993, 32, 1174–1176.
Kampe, K. -D., Egger, N. Reactions of diamines with fullerene C60. Liebigs Annalen 1995, 1, 115–124.
Schick, G.; Kampe, K. -D.; Hirsch, A. Reaction of [60]fullerene with morpholine and piperidine: Preferred 1, 4-additions and fullerene dimer formation. J. Chem. Soc., Chem. Commun. 1995, 19, 2023–2024.
Lamparth, I.; Maichle-Mössmer, C.; Hirsch, A. Reversible template-directed activation of equatorial double bonds of the fullerene framework: Regioselective direct synthesis, crystal structure, and aromatic properties of Th-C66(COOEt)12. Angew. Chem. Int. Ed. 1995, 34, 1607–1609.
Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Lyubovskaya, R. N. Unexpected interconversion reaction of 1, 4-diaminofullerenes. Org. Biomol. Chem. 2006, 4, 1647–1649.
Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Kozlovski, V. I.; Lyubovskaya, R. N. Photoaddition of N-substituted piperazines to C60: An efficient approach to the synthesis of water-soluble fullerene derivatives. Chem—Eur. J. 2006, 12, 5569–5577.
Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Balabaeva, E. M.; Kozlovski, V. I.; Lyubovskaya, R. N. Reactions of chlorofullerene C60Cl6 with N-substituted piperazines. Tetrahedron 2006, 62, 10147–10151.
Isobe, H.; Ohbayashi, A.; Sawamura, M.; Nakamura, E. A cage with fullerene end caps. J. Am. Chem. Soc. 2000, 122, 2669–2670.
Isobe, H.; Tomita, N.; Nakamura, E. One-step multiple addition of amine to [60]fullerene. synthesis of tetra(amino)fullerene epoxide under photochemical aerobic conditions. Org. Lett. 2000, 2, 3663–3665.
Isobe, H.; Tanaka, T.; Nakanishi, W.; Lemiègre, L.; Nakamura, E. Regioselective oxygenative tetraamination of [60]fullerene. fullerene-mediated reduction of molecular oxygen by amine via ground state single electron transfer in dimethyl sulfoxide. J. Org. Chem. 2005, 70, 4826–4832.
Butts, C. P.; Jazdzyk, M. The preparation and structures of non-hydrocarbon functionalized fullerene-diamine adducts. Chem. Commun. 2003, 13, 1530–1531.
Butts, C. P.; Jazdzyk, M. D. S. Piperazine additions to C60—A facile approach to fullerene substitution. Org. Biomol. Chem. 2005, 3, 1209–1216.
Evlampieva, N. P.; Yakimanskii, A. V.; Dobrodumov, A. V.; Nazarova, O. V.; Pashkov, Y. B.; Panarin, E. F.; Ryumtsev, E. I. Synthesis and polar and electrooptical properties of a butylamine derivative of fullerene C60. Russ. J. Gen. Chem. 2005, 75, 751–758.
Hu, X.; Jiang, Z.; Jia, Z.; Huang, S.; Yang, X.; Li, Y.; Gan, L.; Zhang, S.; Zhu, D. Amination of [60]fullerene by ammonia and by primary and secondary aliphatic amines-preparation of amino[60]fullerrene peroxides. Chem—Eur. J. 2007, 13, 1129–1141.
Meza-Laguna, V.; Basiuk, E. V.; Alvarez-Zauco, E.; Acosta-Najarro, D.; Basiuk, V. A. Cross-linking of C60 films with 1, 8-diaminooctane and further decoration with silver nanoparticles. J. Nanosci. Nanotechnol. 2007, 7, 3563–3571.
Besley, N. A.; Titman, J. J.; Wright, M. D. Theoretical study of the 13C NMR spectroscopy of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 17948–17953.
Zurek, E.; Pickard, C. J.; Walczak, B.; Autschbach, J. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes. J. Phys. Chem. A 2006, 110, 11995–12004.
Geckeler, K. E.; Hirsch, A. Polymer-bound C60. J. Am. Chem. Soc. 1993, 115, 3850–3851.
Chen. Q.; Yamada, T.; Kurosu, H.; Ando, I.; Shionon, T.; Doi, Y. Dynamic study of the noncrystalline phase of carbon-13-labeled polyethylene by variable-temperature carbon-13 CP/MAS NMR spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 1992, 30, 591–601.
Soderquist, A.; Burton, D. J.; Pugmire, R. J.; Beeler, A. J.; Grant, D. M.; Durand, B.; Huk, A. Y. Structural variations and evidence of segmental motion in the aliphatic region in coals observed with dipolar-dephasing NMR. Energy Fuels 1987, 1, 50–55.
Wilson, M. A.; Pugmire, R. J.; Karas, J.; Alemany, L. B.; Woolfenden, W. R.; Grant, D. M.; Given, P. H. Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry. Anal. Chem. 1984, 56, 933–943.
Alla, M.; Lippmaa, E. High resolution broad line carbon-13 NMR and relaxation in solid norbornadiene. Chem. Phys. Lett. 1976, 37, 260–264.
Huang, Y.; Gilson, D. F. R.; Butler, I. S.; Morin, F. Study of molecular motions in the orientationally disordered organic solids 1-bromoadamantane and 1-adamantanecarboxylic acid by carbon-13 NMR spin-lattice relaxation and dipolar dephasing time measurements. J. Phys. Chem. 1991, 95, 2151–2156.
Huang, Y.; Paroli, R. M.; Gilson, D. F. R; Butler, I. S. Order-disorder transitions in adamantane derivatives: Vibrational spectroscopic and carbon-13 NMR studies of 1-chloroadamantane. Can. J. Chem. 1993, 71, 1890–1897.
Aitken, C. L.; Barron, A. R. Crystal structure of Al(tBu)3(NH2CH2CH2Ph): A molecular "slinky". J. Chem. Crystal. 1996, 26, 297–300.
Alemany, L. B. Critical factors in obtaining meaningful fast MAS NMR spectra of non-integral spin quadrupolar nuclei. A review with particular emphasis on aluminum-27 MAS NMR of catalysts and minerals. Appl. Magn. Reson. 1993, 4, 179–201.
Alemany, L. B.; Steuernagel, S.; Amoureux, J. -P.; Callender, R. L.; Barron, A. R. Very fast MAS and MQMAS NMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400, 500, and 800 MHz spectrometers. Solid State Nucl. Magn. Reson. 1999, 14, 1–18.
Alemany, L. B.; Callender, R. L.; Barron, A. R.; Steuernagel, S.; Iuga, D.; Kentgens, A. P. M. Single-pulse MAS, selective Hahn echo MAS, and 3QMAS NMR studies of the mineral zoisite at 400, 500, 600, and 800 MHz. Exploring the limits of Al NMR detectability. J. Phys. Chem. B 2000, 104, 11612–11616.
Stebbins, J. F. Dynamics and structure of silicate and oxide melts: Nuclear magnetic resonance studies. Rev. Minera. Geochem. 1995, 32, 191–246.
Nakata, S.; Tanaka, Y.; Asaoka, S.; Nakamura, M. Recent advances in applications of multinuclear solid-state NMR to heterogeneous catalysis and inorganic materials. J. Mol. Struct. 1998, 441, 267–281.
Fitzgerald, J. J.; DePaul, S. M. Solid-state NMR spectroscopy of inorganic materials. ACS Symp. Ser. 1999, 717, 2–133.
Pruski, M.; Amoureux, J. P.; Fernandez, C. Magn. Reson. Colloid Interface Sci: NATO Sci. Ser., II 2002, 76, 107–113.
Rocha, J.; Morais, C. M.; Fernandez, C. Progress in multiple-quantum magic-angle spinning NMR spectroscopy. Top. Curr. Chem. 2004, 246, 141–194.
Ashbrook, S. E.; Wimperis, S. High-resolution NMR of quadrupolar nuclei in solids: The satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 53–108.
van Wüllen, L; Tricot, G.; Wegner, S. An advanced NMR protocol for the structural characterization of aluminophosphate glasses. Solid State Nucl. Magn. Reson. 2007, 32, 44–52.
Kanellopoulos, J.; Freude, D.; Kentgens, A. A practical comparison of MQMAS techniques. Solid State Nucl. Magn. Reson. 2007, 32, 99–108.
758
Views
30
Downloads
53
Crossref
N/A
Web of Science
0
Scopus
0
CSCD
Altmetrics