AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (491.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nanotubes in a Gradient Electric Field as Revealed by STM–TEM Technique

Dmitri Golberg1,2( )Pedro M. F. J. Costa1,3( )Masanori Mitome1Yoshio Bando2
Nanoscale Materials Center amiki 1-1, Tsukuba, Ibaraki 305-0044 Japan
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science Namiki 1-1, Tsukuba, Ibaraki 305-0044 Japan
Center for Research in Ceramics and Composite Materials University of Aveiro 3810-193 Aveiro, Portugal
Show Author Information

Graphical Abstract

Abstract

We have investigated the behavior of two nanotube systems, carbon and boron nitride, under controlled applied voltages in a high-resolution transmission electron microscope (TEM) equipped with a scanning tunneling microscope (STM) unit. Individual nanotubes (or thin bundles) were positioned between a piezo-movable gold electrode and a biased (up to ±140 V) STM tip inside the pole-piece of the microscope. The structures studied include double- and multi-walled carbon nanotubes (the latter having diverse morphologies due to the various synthetic procedures utilized), few-layered boron nitride nanotube bundles and multi-walled boron nitride nanotubes (with or without functionalized surfaces). The electrical breakdown, physical failure, and electrostatic interactions are documented for each system.

Electronic Supplementary Material

Download File(s)
nr-1-2-166_ESM1.pdf (178.6 KB)

References

1

Gao, J.; Wang, Q.; Dai, H. J. Electron transport in very clean, as grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.

2
Avouris, P. Electronics with carbon nanotubes. Phys. World 2007, 20, 40–45 (and references therein).https://doi.org/10.1088/2058-7058/20/3/32
3

Cumings, J.; Collins, P. G.; Zettl, A. Materials–peeling and sharpening multiwall nanotubes. Nature 2000, 406, 586.

4

Svensson, K.; Olin, H.; Olsson, E. Nanopipettes for metal transport. Phys. Rev. Lett. 2004, 93, 145901.

5

Cumings, J.; Zettl, A. Field emission and current-voltage properties of boron nitride nanotubes. Solid State Commun. 2004, 129, 661–664.

6

Huang, J. Y.; Chen, S.; Jo, S. H., Wang, Z, Han, D. X., Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 236802.

7

Wang, M. S.; Chen, Q.; Peng, L.-M. Grinding a nanotube. Adv. Mater. 2008, 20, 724–728.

8

Wei, X. L.; Chen, Q.; Liu, Y., Peng, L.-M. Cutting and sharpening carbon nanotubes using a carbon nanotube nanoknife. Nanotechnology 2007, 18, 185503.

9

Sawaya, S.; Akita, S.; Nakayama, Y. Correlation between the mechanical and electrical properties of carbon nanotubes. Nanotechnology 2007, 18, 035702.

10

Suekane, O.; Nagataki A.; Nakayama, Y. Current-induced curing of defective carbon nanotubes. Appl. Phys. Lett. 2006, 89, 183110.

11

Cumings, J.; Olsson, E.; Petford-Long, A. K.; Zhu, Y. M. Electric and magnetic phenomena studied by in situ transmission electron microscopy. MRS Bull. 2008, 33, 101–106.

12

Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C. Y.; Tang, C. C.; Bando, Y.; Lourie, O. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Appl. Phys. Lett. 2006, 88, 123101.

13

Golberg, D.; Costa, P. M. F. J.; Mitome, M.; Mueller, Ch.; Hampel, S.; Leonhardt, A.; Bando, Y. Copper-filled carbon nanotubes: Rheostatlike behavior and femtogram copper mass transport. Adv. Mater. 2007, 19, 1937–1942.

14

Bai, X. D.; Golberg, D.; Bando, Y.; Zhi, C. Y.; Tang, C. C.; Mitome, M.; Kurashima, K.; Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 2007, 7, 632–637.

15

Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Bando, Y. Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Appl. Phys. Lett. 2007, 91, 223108.

16

Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Bando, Y. Electrical properties of CNx nanotubes probed in a transmission electron microscope. Appl. Phys. A–Mater. 2008, 90, 225–229.

17

Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem. Vap. Depo. , 2006, 12, 327–332.

18

Ando, Y.; Iijima, S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. 1993, 32, L107–L109.

19

Melechko, A. V.; Merkulov, V. I.; McKnight, T. E., Guillorn, M. A.; Klein, K. L.; Lowndes, D. H., Simpson, M. L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and direct assembly. J. Appl. Phys. 2005, 97, 041301.

20

Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Ropes of BN multi-walled nanotubes. Solid State Commun. 2000, 116, 1–6.

21

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 2005, 135, 67–70.

22

Zhi, Y. C.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg D. Grafting boron nitrides: From polymers to amorphous and graphitic carbon. J. Phys. Chem. C 2007, 111, 1230–1233.

23

Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, Ph. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

24

Ding, F.; Jiao, K., Lin, Y.; Yakobson, B. I. How evaporating carbon nanotubes retain their perfection. Nano Lett. 2007, 7, 681–684.

25

Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A–Mater. 2002, 74, 329–332.

26

Bonard, J.-M.; Klinke, C.; Dean, K.A.; Coll, B.F. Degradation and failure of carbon nanotube emitters. Phys. Rev. B 2003, 67, 115406.

27

Wei, W.; Liu, Y., Wei, Y.; Jiang, K.; Peng, L.-M.; Fan, S. Tip cooling effect and failure mechanism of field-emitting carbon nanotubes. Nano Lett. 2007, 7, 64–68.

28

Suzuki, M.; Ominami, Y.; Ngo, Q.; Yang, C. Y. Current-induced breakdown of carbon nanofibers. J. Appl. Phys. 2007, 101, 114307.

29

Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413–2432.

Nano Research
Pages 166-175
Cite this article:
Golberg D, Costa PMFJ, Mitome M, et al. Nanotubes in a Gradient Electric Field as Revealed by STM–TEM Technique. Nano Research, 2008, 1(2): 166-175. https://doi.org/10.1007/s12274-008-8010-y

718

Views

22

Downloads

21

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 April 2008
Revised: 04 June 2008
Accepted: 04 June 2008
Published: 31 July 2008
© Tsinghua Press and Springer-Verlag 2008
Return