AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (759.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A DNA-Based Approach to the Carbon Nanotube Sorting Problem

Xiaomin TuMing Zheng( )
DuPont Central Research and DevelopmentWilmington DE 19880 USA
Show Author Information

Graphical Abstract

Abstract

Carbon nanotube sorting, i.e., the separation of a mixture of tubes into different electronic types and further into species with a specific chirality, is a fascinating problem of both scientific and technological importance. It is one of those problems that are easy to describe but difficult to solve. Single-stranded DNA forms stable complexes with carbon nanotubes and disperses them effectively in water. A particular DNA sequence of alternating guanine (G) and thymine (T) nucleotides ((GT)n, with n = 10 to 45) self-assembles into an ordered supramolecular structure around an individual nanotube, in such a way that the electrostatic properties of the DNA-carbon nanotube hybrid depend on tube structure, enabling nanotube separation by anion-exchange chromatography. This review provides a summary of the separation of metallic and semiconducting tubes, and purification of single (n, m) tubes using the DNA-wrapping approach. We will present our current understanding of the DNA-carbon nanotube hybrid structure and separation mechanisms, and predict future developments of the DNA-based approach.

References

1

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1999.

2

Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.

3

Ciuparu, D.; Chen, Y; Lim, S; Haller, G. L.; Pfefferle, L. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41. J. Phys. Chem. B 2004, 108, 503–507.

4

Li, X.; Tu, X.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.

5

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

6

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.

7

Zheng, M.; Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 6084–6085.

8

Chen, Z.; Du, X.; Du, M.; Rancken, C. D.; Cheng, H.; Rinzler, A. G. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano. Lett. 2003, 3, 1245–1249.

9

Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.

10

Krupke, R.; Hennrich, F.; Löhneysen, H. V.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.

11

Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradient. Nano Lett. 2005, 5, 713–718.

12

Maeda, Y.; Kimura, S. I.; Kanda, M.; Hirashima, Y.; Hasegawa, T.; Wakahara, T.; Lian, Y.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 10287–10290.

13

Heller, D.A.; Mayrhofer, R. M.; Baik, S.; Grinkova, Y. V.; Usrey, M. L.; Strano, M. S. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 14567–14573.

14

Arnold, M.S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

15

Peng, H.; Alvarez, N. T.; Kittrell, C.; Hauge, R. H.; Schmidt, H. K. Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 8396–8397.

16

Kim, W. J.; Usrey, M. L.; Strano, M. S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 2007, 19, 1571–1576.

17

Weisman, R. B. Four degrees of separation. Nat. Mater. 2003, 2, 569–570.

18

Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

19

Huang, X.; McLean, R. S.; Zheng, M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 2005, 77, 6225–6228.

20

Tao, N. J.; Shi, Z. Monolayer guanine and adenine on graphite in NaCl solution: A comparative STM and AFM study. J. Phys. Chem. B 1994, 98, 1464–1471.

21

Sowerby, S. J.; Edelwirth, M.; Heckl, W. M. Self-assembly at the prebiotic solid-liquid interface: Structure of self-assembled monolayers of adenine and guanine bases formed on inorganic surfaces. J. Phys. Chem. B 1998, 102, 5914–5922.

22

Sowerby, S. J.; Cohn, C. H.; Heckl, W. M.; Holm, N. G. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Proc. Natl. Acad. Sci. U. S. A, 2001, 98, 820–822.

23

Wilson, D. S.; Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647.

24

Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; McLean, R. S.; Brus, L. E. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 2006, 128, 9004–9005.

25

Johnson, R. R.; Johnson, A. T. C.; Klein, M. L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008, 8, 69–75.

26

Enyashin, A. N.; Gemming, S.; Seifert, G. DNA-wrapped carbon nanotubes. Nanotechnology 2007, 18, 245702.

27

Frischknecht, A. L.; Martin, M. G. Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J. Phys. Chem. C 2008, 112, 6271–6278.

28

Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S.; Ahuja, R. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 2008, 19, 125701.

29

Meng, S.; Maragakis, P.; Papaloukas, C.; Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 2007, 7, 45–50.

30

Zheng, M.; Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 15490–15494.

31

Lustig, S. R.; Jagota, A.; Khripin, C.; Zheng, M. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 2005, 109, 2559–2566.

32

Wei, C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 2006, 6, 1627–1631.

33

Bauer, B. J.; Becker, M. L.; Bajpai, V.; Fagan, J. A.; Hobbie, E. K.; Migler, K.; Guttman, C. M.; Blair, W. R. Measurement of single-wall nanotube dispersion by size exclusion chromatography. J. Phys. Chem. C 2007, 111, 17914–17918.

34

Bauer, B.J.; Fagan, J. A.; Hobbie, E. K.; Chun, J.; Bajpai, V. Chromatographic fractionation of SWCNT/DNA dispersions with on-line multi-angle light scattering. J. Phys. Chem. C 2008, 112, 1842–1850.

35

Zhang, L.; Zaric, S.; Tu, X.; Wang, X.; Zhao, W.; Dai, H. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 2008, 130, 2686–2691.

36

Chou, S. G.; Decamp, M. F.; Jiang, J.; Samsonidze, G. G.; Barros, E. B.; Plentz, F.; Jorio, A.; Zheng, M.; Onoa, G. B.; Semke, E. D.; et al. Phonon-assisted exciton relaxation dynamics for a (6, 5)-enriched DNA-wrapped single-walled carbon nanotube sample. Phys. Rev. B 2005, 72, 195415.

37

Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P.; et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 2005, 94, 127402.

38

Torrens, O. N.; Milkie, D. E.; Zheng, M.; Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett. 2006, 6, 2864–2867.

39

Zheng, M.; Rostovtsev, V. V. Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 7702–7703.

40

Carlson, L. J.; Maccagnano, S. E.; Zheng, M.; Silcox, J.; Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 2007, 7, 3698–3703.

41

Chou, S. G.; Son, H.; Kong, J.; Jorio, A. Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy. Appl. Phys. Lett. 2007, 90, 131109.

42

Torrens, O. N.; Milkie, D. E.; Ban, H. Y.; Zheng, M.; Onoa, G. B.; Gierke, T. D.; Kikkawa, J. M. Measurement of chiral-dependent magnetic anisotropy in carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 252–253.

43

Song, D.; Wang, F.; Dukovic, G.; Zheng, M.; Semke, E. D.; Brus, L. E.; Heinz, T. F. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Phys. Rev. Lett. 2008, 100, 225503.

44

Becker, M. L.; Fagan, J. A.; Gallant, N. D.; Bauer, B. J.; Bajpai, V.; Hobbie, E. K.; Lacerda, S. H.; Migler, K. B.; Jakupciak, J. P. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 2007, 19, 939–945.

45

Manohar, S.; Tang, T.; Jagota, A. Structure of homopolymer DNA-CNT hybrids. J. Phys. Chem. C 2007, 111, 17835–17845.

Nano Research
Pages 185-194
Cite this article:
Tu X, Zheng M. A DNA-Based Approach to the Carbon Nanotube Sorting Problem. Nano Research, 2008, 1(3): 185-194. https://doi.org/10.1007/s12274-008-8022-7

740

Views

15

Downloads

127

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 June 2008
Revised: 01 July 2008
Accepted: 07 July 2008
Published: 01 March 2008
© Tsinghua Press and Springer-Verlag 2008

This article is published with open access at Springerlink.com

Return