Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We investigate electronic transport in Josephson junctions formed by individual single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to the resistive branch, with a gate-tunable switching current ranging from 65 pA to 2.5 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with the classical phase diffusion model for resistively and capacitively shunted junctions.
Morpurgo, A. F.; Kong, J.; Marcus, C. M.; Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 1999, 286, 263–265.
Kasumov, A. Y.; Deblock, R.; Kociak, M.; Reulet B; Bouchiat, H.; khodos, I. I.; Gorbatov, Y. B.; Volkov, V. T.; Journet, C.; Burghard, M. Supercurrents through single-walled carbon nanotubes. Science 1999, 284, 1508–1511.
Buitelaar, M. R.; Nussbaumer, T.; Schonenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 2002, 89, 256801.
Buitelaar, M. R.; Belzig, W.; Nussbaumer, T.; Babic, B.; Bruder, C.; Schonenberger, C. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 2003, 91, 057005.
Jarillo-Herrero, P.; van Dam, J. A.; Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 2006, 439, 953–956.
Jorgensen, H. I.; Grove-Rasmussen, K.; Novotny, T.; Flensberg, K.; Lindelof, P. E. Electron transport in single-wall carbon nanotube weak links in the Fabry–Perot regime. Phys. Rev. Lett. 2006, 96, 207003.
Cleuziou, J. P.; Wernsdorfer, W.; Bouchiat, V.; Ondarcuhu, T.; Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 2006, 1, 53–59.
Cleuziou, J. P.; Wernsdorfer, W.; Andergassen, S.; Florens, S.; Bouchiat, V.; Ondarcuhu, T.; Monthioux, M. Gate-tuned high frequency response of carbon nanotube Josephson junctions. Phys. Rev. Lett. 2007, 99, 117001.
Tsuneta, T.; Lechner, L.; Hakonen, P. J. Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube. Phys. Rev. Lett. 2007, 98, 087002.
Eichler, A.; Weiss, M.; Oberholzer, S.; Schonenberger, C.; Yeyati, A. L.; Cuevas, J. C.; Martin-Rodero, A. Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 2007, 99, 126602.
Jorgensen, H. I.; Novotny, T.; Grove-Rasmussen, K.; Flensberg, K.; Lindelof, P. E. Critical current 0-pi transition in designed Josephson quantum dot junctions. Nano Lett. 2007, 7, 2441–2445.
Sahoo, S.; Kontos, T.; Furer, J.; Hoffmann, C.; Graber, M.; Cottet, A.; Schonenberger, C. Electric field control of spin transport. Nat. Phys. 2005, 1, 99–102.
Man, H. T.; Wever, I. J. W.; Morpurgo, A. F. Spin-dependent quantum interference in single-wall carbon nanotubes with ferromagnetic contacts. Phys. Rev. B 2006, 73, 241401.
Tinkham, M. Introduction to Superconductivity. Second Edition; McGraw-Hill Book Co.: New York, 1996.
Martinis, J. M.; Kautz, R. L. Classical phase diffusion in small hysteretic Josephson junctions. Phys. Rev. Lett. 1989, 63, 1507–1510.
Ingold, G. L.; Grabert, H.; Eberhardt, U. Cooper-pair current through ultrasmall Josephson junctions. Phys. Rev. B 1994, 50, 395–402.
Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, 878–881.
Liang, W. J.; Bockrath, M.; Bozovic, D.; Hafner, J. H.; Tinkham, M.; Park, H. Fabry–Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669.
Zhou, S. Y.; Gweon, G. H.; Graf, J.; Fedorov, A. V.; Spataru, C. D.; Diehl, R. D.; Kopelevich, Y.; Lee, D. H.; Louie, S. G.; Lanzara, A. First direct observation of Dirac fermions in graphite. Nat. Phys. 2006, 2, 595–599.
Lemay, S. G.; Janssen, J. W.; van den Hout, M.; Mooij, M.; Bronikowski, M. J.; Willis, P. A.; Smalley, R. E.; Kouwenhoven, L. P.; Dekker, C. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 2001, 412, 617–620.
Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 1964, 19, 1228.
Blonder, G. E.; Tinkham, M.; Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting micro-constrictions–excess current, charge imbalance, and super-current conversion. Phys. Rev. B 1982, 25, 451.
Beenakker, C. W. J.; van Houten, H. Resonant Josephson current through a quantum dot. In Single Electron Tunneling and Mesoscopic Devices, Koch, H.; Lubbig, H., Eds. Springer: Berlin, 1992; pp 175–179.
Beenakker, C. W. J. Three “universal” mesoscopic Josephson effects. In Transport Phenomena in Mesoscopic Systems, Fukuyama, H.; Ando, T., Eds. Springer: Berlin, 1992.
Joyez, P.; Lafarge, P.; Filipe, A.; Esteve, D.; Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor. Phys. Rev. Lett. 1994, 72, 2458–2461.
793
Views
24
Downloads
12
Crossref
N/A
Web of Science
0
Scopus
0
CSCD
Altmetrics