Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ultralong ZnO nanocombs have been synthesized on silicon substrates with a high growth rate of ~7 μm/s using a simple "thermal evaporation and condensation" method promoted by Cu catalysts. The lengths of the ZnO nanocombs range from several millimeters to more than one centimeter and the diameters of the branches are about 300 nm. The growth mechanism of the ultralong nanocombs and the catalytic behavior of the copper are discussed. The nanocombs were readily separated and their applications as optical polarizer and grating were investigated. The results show that the ultralong ZnO nanocombs can act as effective optical components in miniaturized integrated optics systems.
Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.
Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.
Yan, H.; He, R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 2003, 125, 4728–4729.
Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.
Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R. P.; Ajayan, M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.
Huang, S.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.
Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 2006, 18, 3275–3278.
Lao, C. S.; Gao, P. X.; Yang, R. S.; Zhang, Y.; Dai, Y.; Wang, Z. L. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chem. Phys. Lett. 2005, 417, 359–363.
Shen, G. Z.; Bando, Y.; Chen, D.; Liu, B. D.; Zhi, C. Y.; Golberg, D. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route. J. Phys. Chem. B 2006, 110, 3973–3978.
Lim, Y. S.; Park, J. W.; Hong, S. T.; Kim, J. Carbothermal synthesis of ZnO nanocomb structure. Mater. Sci. Eng. B 2006, 129, 100–103.
Yang, W. Y.; Xie, Z. P.; Miao, H. Z.; Zhang, L. G.; An, L. N. Coalescence of nanobranches: A new growth mechanism for single crystal nanobelts. J. Phys. Chem. B 2006, 110, 3969–3972.
Li, S. Y.; Lee, C. Y.; Tseng, T. Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J. Cryst. Growth 2003, 247, 357–362.
Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.
Onuferko J. H.; Woodruff, D. P. LEED structural study of the adsorption of oxygen on Cu {100} surfaces. Surf. Sci. 1980, 95, 555–570.
Richter, H.; Gerhardt, U. Adsorption sites of oxygen on Cu (001) and Ni (001) determined from the shape of the low-energy electron-diffraction spots. Phys. Rev. Lett. 1983, 51, 1570–1572.
Parkin, S. R.; Zeng, H. C.; Zhou, M. Y.; Mitchell, K. A. R. Low-energy electron-diffraction crystallographic determination for the Cu(110)2×1–O surface structure. Phys. Rev. B 1990, 41, 5432–5435.
811
Views
21
Downloads
24
Crossref
N/A
Web of Science
0
Scopus
0
CSCD
Altmetrics
This article is published with open access at Springerlink.com