AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Interfacial Charge Transfer in Nanoscale Polymer Transistors

Jeffrey H. Worne1Rajiv Giridharagopal1Kevin F. Kelly1Douglas Natelson1,2( )
Department of Electrical and Computer EngineeringRice University, 6100 Main St., HoustonTX77005USA
Department of Physics and AstronomyRice University, 6100 Main St., HoustonTX77005USA
Show Author Information

Graphical Abstract

Abstract

Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a numberof photoemission experiments. We present electronic transport measurements in very short channel (L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero gate voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Ptcontacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.

References

1

Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys: Condens. Matter 2008, 20, 184008.

2

Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 1996, 54, R14321-R14324.

3

Nüesch, F.; Rotzinger, F.; Si-Ahmed, L.; Zuppiroli, L. Chemical potential shifts at organic device electrodes produced by grafted monolayers. Chem. Phys. Lett. 1998, 288, 861-867.

4

Hamadani, B. H.; Corley, D. A.; Ciszek, J. W.; Tour, J. M.; Natelson, D. Controlling charge injection in organic field-effect transistors using self-assembled monolayers. Nano Lett. 2006, 6, 1303-1306.

5

Hill, I. G.; Rajagopal, A.; Kahn, A.; Hu, Y. Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 1998, 73, 662-664.

6

Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu C. -H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 2006, 88, 053502.

7

Koch N.; Vollmer, A. Electrode-molecular semiconductor contacts: Work-function-dependent injection barriers versus Fermi-level pinning. Appl. Phys. Lett. 2006, 89, 162107.

8

Vàzquez, H.; Dappe, Y. J.; Ortega, J.; Flores, F. Energy level alignment at metal/organic semiconductor interfaces: "Pillow" effect, induced density of interface states, and charge neutrality level. J. Chem. Phys. 2007, 126, 144703.

9

Vàzquez, H.; Flores, F.; Oszwaldowski, R.; Ortega, J.; Perez, R.; Kahn, A. Barrier formation at metal-organic interfaces: Dipole formation and the charge neutrality level. Appl. Surf. Sci. 2004, 234, 1-4.

10

Crispin, A.; Crispin, X.; Fahlman, M.; Berggren, M.; Salaneck, W. R. Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces. Appl. Phys. Lett. 2006, 89, 213503.

11

Hwang, J.; Kim, E. -G.; Liu, J.; Br´edas, J. -L.; Duggal, A.; Kahn, A. Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces. J. Phys. Chem. C 2007, 111, 1378-1384.

12

Bürgi, L.; Richards, T. J.; Friend, R. H.; Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 2003, 94, 6129-6137.

13

Li, T.; Ruden, P. P.; Campbell, I. H.; Smith, D. L. Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 2003, 93, 4017-4022.

14

Hamadani, B. H.; Natelson, D. Nonlinear charge injection in organic field-effect transistors. J. Appl. Phys. 2005, 97, 064508.

15

Ng, T. N.; Silveira, W. R.; Marohn, J. A. Dependence of charge injection on temperature, electric field, and energetic disorder in an organic semiconductor. Phys. Rev. Lett. 2007, 98, 066101.

16

Hamadani, B. H.; Ding, H.; Gao, Y.; Natelson, D. Doping-dependent charge injection and band alignment in organic field-effect transistors. Phys. Rev. B 2005, 72, 235302.

17

Cai, L.; Yao, Y.; Yang, J.; Price, D. W., Jr.; Tour, J. M. Chemical and potential assisted assembly of thioacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces. Chem. Mater. 2002, 14, 2905-2909.

18

Hamadani, B. H.; Natelson, D. Temperature-dependent contact resistances in high quality polymer field-effect transistors. Appl. Phys. Lett. 2004, 84, 443-445.

19

Gundlach, D. J.; Royer, J. E.; Park, S. K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.; Kline, R. J.; League, L. C.; Kirillov, O.; Richter, C. A.; Kushmerick, J. G.; Richter, L. J.; Parkin, S. R.; Jackson, T. N.; Anthony, J. E. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat. Mater. 2008, 7, 216-221.

20

Merlo, J. A.; Frisbie, C. D. Field effect conductance of conducting polymer nanofibers. J. Polym. Sci. B: Polym. Phys. 2003, 41, 2674-2680.

21

Rep, D. B. A.; Morpurgo, A. F.; Klapwijk, T. Doping-dependent charge injection into regioregular poly(3-hexylthiophene). Org. Electron. 2003, 4, 201-207.

22

Bourgoin, J. P.; Johnson, M. B.; Michel, B. Semiconductor characterization with the scanning surface harmonic microscope. Appl. Phys. Lett. 1994, 65, 2045-2047.

23

Donhauser, Z. J.; McCarty, G. S.; Bumm, L. A.; Weiss P. S. High resolution dopant profiling using a tunable AC scanning tunneling microscope. In Characterization and Metrology for ULSI Technology: 2000 International Conference; Seiler, D. G. et al., Eds.; American Institute of Physics: New York, 2001, pp. 641-646.

24

Kelly, K. F.; Donhauser, Z. J.; Mantooth, B. A.; Weiss, P. S. Expanding the capabilities of the scanning tunneling microscope. In NATO ASI Series II: Mathematics, Physics, and Chemistry; Vilarinho, P.; Rosenwaks, Y.; Kingon, A., Eds.; Springer: New York, 2005, pp. 153-171.

25

Schmidt, J.; Rapoport, D. H.; Fröhlich, H. -J. Microwave-frequency alternating current scanning tunneling microscopy by difference frequency detection: Atomic resolution imaging on graphite. Rev. Sci. Instr. 1999, 70, 3377-3380.

26

Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones, L. II, ; Allara, D. L.; Tour, J. M.; Weiss, P. S. Are single molecular wires conducting? Science 1996, 271, 1705-1707.

27

Lee, J.; Tu, X.; Ho, W. Spectroscopy and microscopy of spin-sensitive rectification current inducted by microwave radiation. Nano Lett. 2005, 5, 2613-2617.

28

Paasch, G.; Scheinert, S. Space charge layers in organic field-effect transistors with Gaussian or exponential semiconductor density of states. J. Appl. Phys. 2007, 101, 024514.

29

Fursina, A.; Lee, S.; Sofin, R. G. S.; Shvets, I. V.; Natelson, D. Nanogaps with very large aspect ratios for electrical measurements. Appl. Phys. Lett. 2008, 92, 113102.

Nano Research
Pages 341-350
Cite this article:
Worne JH, Giridharagopal R, Kelly KF, et al. Interfacial Charge Transfer in Nanoscale Polymer Transistors. Nano Research, 2008, 1(4): 341-350. https://doi.org/10.1007/s12274-008-8037-0

677

Views

29

Downloads

5

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 July 2008
Revised: 01 September 2008
Accepted: 01 September 2008
Published: 01 October 2008
© Tsinghua Press and Springer-Verlag 2008

This article is published with open access at Springerlink.com

Return