Graphical Abstract

A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments.
Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G. Carbon Nanotubes; Springer: New York, 2008.
O'Connell, M. J. Carbon Nanotubes: Properties and Applications; CRC Press: Boca Raton, 2006.
Ahn, J. -H.; Kim, H. -S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.
Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2007, 2, 230–236.
Ago, H.; Nakamura, K.; Ikeda K. -I.; Uehara, N.; Ishigami, N.; Tsuji, M.; Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.
Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.
Kocabas, C.; Hur, S. -H.; Gaur, A.; Meitl, M. A.; Shim M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.
Ding, L.; Yuan, D.; Liu J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.
Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915.
Park J. -Y. Carbon nanotube field-effect transistor with a carbon nanotube gate electrode. Nanotechnology 2007, 18, 095202.
Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nature Nanotech. 2008, 3, 195–200.
Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.
Müller, A.; Das, S. K.; Kögerler, P.; Bögge, H.; Schmidtmann, M.; Trautwein, A. X.; Schunemann, V.; Krickemeyer, E.; Preetz, W. A new type of supramolecular compound: Molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew. Chem., Int. Ed. Engl. 2000, 39, 3414–3417.
An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.
Keshavarzi, A.; Raychowdhury, A.; Kurtin, J.; Roy, K.; De, V. Carbon nanotube field-effect transistors for high-performance digital circuits–transient analysis, parasitics, and scalability. IEEE Trans. Electron Devices 2006, 53, 2718–2726.
Lee, J. S.; Ryu, S.; Yoo, K.; Choi, I. S.; Yun, W. S.; Kim, J. Origin of gate hysteresis in carbon nanotube field-effect transistors. J. Phys. Chem. C 2007, 111, 12504–12507.