PDF (1 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (1)
Table 1
Research Article | Open Access

Growth of Serpentine Carbon Nanotubes on Quartz Substrates and Their Electrical Properties

Seokwoo Jeon1,2,3Changgu Lee2,3Jinyao Tang1,3James Hone2,3()Colin Nuckolls1,3
Department of ChemistryColumbia UniversityNew YorkNY10027USA
Department of Mechanical EngineeringColumbia UniversityNew YorkNY10027USA
The Columbia University Nanoscale Science and Engineering CenterColumbia UniversityNew YorkNY10027USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments.

References

1

Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G. Carbon Nanotubes; Springer: New York, 2008.

2

O'Connell, M. J. Carbon Nanotubes: Properties and Applications; CRC Press: Boca Raton, 2006.

3

Ahn, J. -H.; Kim, H. -S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

4
Dondero, W.; Gorga, R. E. Carbon nanotubes. In Handbook of Nanoscience, Engineering, and Technology, 2nd ed.; Goddard, W. A.; Brenner, D. W.; Lyshevski, S. E.; Iafrate, G. J., Eds; CRC Press: Boca Raton, 2007, pp. 21/27–21/37.
5

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2007, 2, 230–236.

6

Ago, H.; Nakamura, K.; Ikeda K. -I.; Uehara, N.; Ishigami, N.; Tsuji, M.; Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.

7

Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.

8

Kocabas, C.; Hur, S. -H.; Gaur, A.; Meitl, M. A.; Shim M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

9

Ding, L.; Yuan, D.; Liu J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

10

Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915.

11

Park J. -Y. Carbon nanotube field-effect transistor with a carbon nanotube gate electrode. Nanotechnology 2007, 18, 095202.

12

Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nature Nanotech. 2008, 3, 195–200.

13

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

14

Müller, A.; Das, S. K.; Kögerler, P.; Bögge, H.; Schmidtmann, M.; Trautwein, A. X.; Schunemann, V.; Krickemeyer, E.; Preetz, W. A new type of supramolecular compound: Molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew. Chem., Int. Ed. Engl. 2000, 39, 3414–3417.

15

An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.

16

Keshavarzi, A.; Raychowdhury, A.; Kurtin, J.; Roy, K.; De, V. Carbon nanotube field-effect transistors for high-performance digital circuits–transient analysis, parasitics, and scalability. IEEE Trans. Electron Devices 2006, 53, 2718–2726.

17

Lee, J. S.; Ryu, S.; Yoo, K.; Choi, I. S.; Yun, W. S.; Kim, J. Origin of gate hysteresis in carbon nanotube field-effect transistors. J. Phys. Chem. C 2007, 111, 12504–12507.

Nano Research
Pages 427-433
Cite this article:
Jeon S, Lee C, Tang J, et al. Growth of Serpentine Carbon Nanotubes on Quartz Substrates and Their Electrical Properties. Nano Research, 2008, 1(5): 427-433. https://doi.org/10.1007/s12274-008-8044-1
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return