Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of fe ~ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double helix, resembling DNA, with a pitch λt of about 15–20 lattice parameters. Through atomistic simulations, we investigate how the torsion τ~1/λ/t decreases with the width of the ribbon, and observe its bifurcation: the twist of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λe) of the emerging sinusoidal "frill" at the edge is fully determined by the intrinsic parameters of graphene, namely its bending stiffness D=1.5 eV and the edge force fe with λe ~D/fe. Analysis reveals other warping configurations and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in sensors.
Kelly, B. T. Physics of Graphite; London: Applied Science Publishers, 1981.
Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V. Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2008, in press.
Yang, L.; Cohen, M. L; Louie, S. G. Magnetic edge-state excitons in zigzag graphene nanoribbons. Phys. Rev. Lett. 2008, 101, 186401.
Enoki, T.; Kobayashi, Y.; Fukui, K. -I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609–645.
Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.
Ajayan, P. M.; Yakobson, B. I. Oxygen breaks into carbon world. Nature 2006, 441, 818–819.
Li, J. -L; Kudin, K. N.; McAllister, M. J.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.
Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 2001, 64, 235406.
Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. Topics Appl. Phys. 2001, 80, 287–327.
Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond the linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.
Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford: Clarendon Press, 1986.
Yakobson, B. I.; Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanoparticle Res. 2006, 8, 105–110.
Brenner, D. W. Tersoff-type potential for carbon, hydrogen and oxygen. Mat. Res. Soc. Symp. Proc. 1989, 141, 59–64.
Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000.
Ballone, P.; Milani, P. Simulated annealing of carbon clusters. Phys. Rev. B, 1990, 42, 0003201.
Jun, S. Density-functional study of edge stress in graphene. Phys. Rev. B 2008, 78, 073405.
Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.
Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.
Courant, R.; Robbins, H.; Stewart, I. What is Mathematics? An Elementary Approach to Ideas and Methods; Oxford: Oxford University Press, 1996.
Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y.W. Edge-stressinduced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.
760
Views
21
Downloads
154
Crossref
N/A
Web of Science
156
Scopus
0
CSCD
Altmetrics
This article is published with open access at Springerlink.com