AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (587 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Spontaneous Twist and Intrinsic Instabilities of Pristine Graphene Nanoribbons

Ksenia V. BetsBoris I. Yakobson( )
Department of Mechanical Engineering & Materials Science Department of Chemistry, and The Richard E. Smalley Institute for Nanoscale Science and Technology, Rice UniversityHouston, Texas 77005 USA
Show Author Information

Graphical Abstract

Abstract

In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of fe ~ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double helix, resembling DNA, with a pitch λt of about 15–20 lattice parameters. Through atomistic simulations, we investigate how the torsion τ~1/λ/t decreases with the width of the ribbon, and observe its bifurcation: the twist of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λe) of the emerging sinusoidal "frill" at the edge is fully determined by the intrinsic parameters of graphene, namely its bending stiffness D=1.5 eV and the edge force fe with λe ~D/fe. Analysis reveals other warping configurations and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in sensors.

References

1

Kelly, B. T. Physics of Graphite; London: Applied Science Publishers, 1981.

2

Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V. Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

4

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2008, in press.

5

Yang, L.; Cohen, M. L; Louie, S. G. Magnetic edge-state excitons in zigzag graphene nanoribbons. Phys. Rev. Lett. 2008, 101, 186401.

6

Enoki, T.; Kobayashi, Y.; Fukui, K. -I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609–645.

7

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

8

Ajayan, P. M.; Yakobson, B. I. Oxygen breaks into carbon world. Nature 2006, 441, 818–819.

9

Li, J. -L; Kudin, K. N.; McAllister, M. J.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.

10

Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 2001, 64, 235406.

11

Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. Topics Appl. Phys. 2001, 80, 287–327.

12

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond the linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

13

Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford: Clarendon Press, 1986.

14

Yakobson, B. I.; Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanoparticle Res. 2006, 8, 105–110.

15
Yakobson, B. I.; Couchman, L. S. Carbon nanotubes: Supramolecular mechanics. In Encyclopedia of Nanoscience and Nanotechnology, Schwartz J. A.; Contescu, C. I.; Putyera, K., Eds.; Marcel Dekker: New York, 2004. pp. 587–601.https://doi.org/10.1201/9781439834398.ch27
16

Brenner, D. W. Tersoff-type potential for carbon, hydrogen and oxygen. Mat. Res. Soc. Symp. Proc. 1989, 141, 59–64.

17

Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000.

18

Ballone, P.; Milani, P. Simulated annealing of carbon clusters. Phys. Rev. B, 1990, 42, 0003201.

19

Jun, S. Density-functional study of edge stress in graphene. Phys. Rev. B 2008, 78, 073405.

20

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

21

Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

22

Courant, R.; Robbins, H.; Stewart, I. What is Mathematics? An Elementary Approach to Ideas and Methods; Oxford: Oxford University Press, 1996.

23

Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y.W. Edge-stressinduced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.

Nano Research
Pages 161-166
Cite this article:
Bets KV, Yakobson BI. Spontaneous Twist and Intrinsic Instabilities of Pristine Graphene Nanoribbons. Nano Research, 2009, 2(2): 161-166. https://doi.org/10.1007/s12274-009-9015-x

760

Views

21

Downloads

154

Crossref

N/A

Web of Science

156

Scopus

0

CSCD

Altmetrics

Received: 03 December 2008
Revised: 18 December 2008
Accepted: 18 December 2008
Published: 01 February 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return