AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mesoflowers: A New Class of Highly Efficient Surface-Enhanced Raman Active and Infr red-Absorbing Materials

Panikkanvalappil Ravindranathan SajanlalThalappil Pradeep( )
DST Unit on Nanoscience (DST UNS)Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology MadrasChennai600 036India
Show Author Information

Graphical Abstract

Abstract

A method for the synthesis of a new class of anisotropic mesostructured gold material, which we call "mesoflowers", is demonstrated. The mesoflowers, unsymmetrical at the single particle level, resemble several natural objects and are made up of a large number of stems with unusual pentagonal symmetry. The mesostructured material has a high degree of structural purity with star-shaped, nano-structured stems. The mesoflowers were obtained in high yield, without any contaminating structures and their size could be tuned from nano- to meso-dimensions. The dependence of various properties of the mesoflowers on their conditions of formation was studied. The near-infrared–infrared (NIR–IR) absorption exhibited by the mesoflowers has been used for the development of infrared filters. Using a prototypical device, we demonstrated the utility of the gold mesoflowers in reducing the temperature rise in an enclosure exposed to daylight in peak summer. These structures showed a high degree of surface-enhanced Raman scattering (SERS) activity compared to spherical analogues. SERS-based imaging of a single mesoflower is demonstrated. The high SERS activity and NIR–IR absorption property open up a number of exciting applications in diverse areas.

Electronic Supplementary Material

Download File(s)
nr-2-4-306_ESM.pdf (1.6 MB)

References

1

Xiao, Z. -L.; Han, C. Y.; Kwok, W. -K.; Wang, H. -H.; Welp, U.; Wang, J.; Crabtree. G. W. Tuning the architecture of mesostructures by electrodeposition. J. Am. Chem. Soc. 2004, 126, 2316–2317.

2

Penner, R. M. Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 2002, 106, 3339–3353.

3

Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

4

Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Murphy, C. J. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

5

Perez-Juste, J.; Pastorìza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

6

Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313.

7

Sajanlal, P. R.; Pradeep, T. Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater. 2008, 20, 980–983.

8

Seong Ah, D. C.; Yun, Y. J.; Park, H. J.; Kim, W. J.; Ha, D. H.; Yun, W. S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 2005, 17, 5558–5561.

9

Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

10

Hu, J.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

11

Wiley, B.; Sun, Y.; Mayers, B.; Xia. Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.

12

Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Synthesis and optical properties of "branched" gold nanocrystals. Nano Lett. 2004, 4, 327–330.

13

Nehl, C. L.; Liao, H.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.

14

Hu, J.; Zhang, Y.; Liu, B.; Liu, J.; Zhou, H.; Xu, Y.; Jiang, Y. Y.; Yang, Z.; Tian, Z. Synthesis and properties of tadpole-shaped gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 9470–9471.

15

Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T. Fluorescent gold nanoparticle superlattices. Adv. Mater. 2008, 20, 4719–4723.

16

Yang, Y.; Liu, S.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665.

17

Pastoriza-Santos, I.; Liz-Marzán, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2002, 2, 903–905.

18

Liu, J.; Cankurtaran, B.; Wieczorek, L.; Ford, M. J.; Cortie, M. Anisotropic optical properties of semitransparent coatings of gold nanocaps. Adv. Funct. Mater. 2006, 16, 1457–1461.

19

Maillard, M.; Giorgio, S.; Pileni, M. P. Silver nanodisks. Adv. Mater. 2002, 14, 1084–1086.

20

El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257–264.

21

Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir 2007, 23, 9463–9471.

22

Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics–A route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501–1505.

23

Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.

24

O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Canc. Lett. 2004, 209, 171–176.

25

Sajanlal, P. R.; Sreeprasad, T. S.; Nair, A. S.; Pradeep, T. Wires, plates, flowers, needles, and core-shells: Diverse nanostructures of gold using polyaniline templates. Langmuir 2008, 24, 4607–4614.

26

Jena, B. K.; Raj, C. R. Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity. Chem. Mater. 2008, 20, 3546–3548.

27

Bakshi, M. S.; Possmayer, F.; Petersen, N. O. Role of different phospholipids in the synthesis of pearl-necklace-type gold–silver bimetallic nanoparticles as bioconjugate materials. J. Phys. Chem. C 2007, 111, 14113–14124.

28

Li, Y.; Shi, G. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B 2005, 109, 23787–23793.

29

Jena, B. K.; Raj, C. R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007, 23, 4064–4670.

30

Wang, W.; Cui, H. Chitosan-luminol reduced gold nanoflowers: From one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J. Phys. Chem. C 2008, 112, 10759–10766.

31

Qian, L.; Yang, X. Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers. J. Phys. Chem. B 2006, 110, 16672–16678.

32

Yang, Z.; Lin, Z. H.; Tang, C. Y.; Chang, H. T. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials. Nanotechnology 2007, 18, 255606.

33

Zijlstra, P.; Bullen, C.; Chon, J. W. M.; Gu, M. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 2006, 110, 19315–19318.

34

Fleming, D. A.; Williams, M. E. Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir 2004, 20, 3021–3023.

35

Huang, W. -L.; Chen, C. -H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007, 111, 2533–2538.

36

Park, H. J.; Ah, C. S.; Kim, W. -J.; Choi, I. S.; Lee, K. P. Temperature-induced control of aspect ratio of gold nanorods. J. Vac. Sci. Technol. A 2006, 24, 1323–1326.

37

Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 2006, 16, 3906–3919.

38

Chen, C.; Gao, Y. Electrosyntheses of poly(neutral red), a polyaniline derivative. Electrochim. Acta, 2007, 52, 3143–3148.

39

Wang, H. Y.; Mu, S. L. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film. Sens. Actuators B 1999, 56, 22–30.

40

Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B 2001, 105, 2343–2350.

41

Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499.

42

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

43

Xu, X.; Stevens, M.; Cortie, M. B. In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem. Mater. 2004, 16, 2259–2266.

44

Kumar, P. S.; Pastoriza-Santos, I.; Rodríguez-González, B.; García de Abajo, F. J.; Liz-Marzán, L. M. High-yield synthesis and optical response of gold nanostars. Nanotechnology 2008, 19, 15606.

45

Turkevich, J.; Stevenson, P. L.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

46

Kumar, G. V. P.; Shruthi, S.; Vibha, B.; Reddy, B. A. A.; Kundu, T. K.; Narayana, C. Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J. Phys. Chem. C 2007, 111, 4388–4392.

47

Hao, E.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366.

48

Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.

49

Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303.

50

Subramaniam, C.; Chakrabarti, J.; Pradeep, T. Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 2005, 95, 164501.

Nano Research
Pages 306-320
Cite this article:
Sajanlal PR, Pradeep T. Mesoflowers: A New Class of Highly Efficient Surface-Enhanced Raman Active and Infr red-Absorbing Materials. Nano Research, 2009, 2(4): 306-320. https://doi.org/10.1007/s12274-009-9028-5

818

Views

17

Downloads

83

Crossref

N/A

Web of Science

81

Scopus

0

CSCD

Altmetrics

Received: 22 December 2008
Revised: 05 February 2009
Accepted: 05 February 2009
Published: 01 April 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return