AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (801.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis of WS2 and MoS2 Fullerene-Like Nanoparticles from Solid Precursors

Inna Wiesel1Hamutal Arbel1Ana Albu-Yaron1Ronit Popovitz-Biro2Jeffrey M. Gordon3,4Daniel Feuermann3Reshef Tenne1( )
Department of Materials and InterfacesWeizmann Institute of ScienceRehovot76100Israel
Electron Microscopy UnitWeizmann Institute of ScienceRehovot76100Israel
Department of Solar Energy and Environmental PhysicsJacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevBeer Sheva Campus84990Israel
The Pearlstone Center for Aeronautical Engineering StudiesDepartment of Mechanical EngineeringBen-Gurion University of the NegevBeer Sheva84105Israel
Show Author Information

Graphical Abstract

Abstract

Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ~900 ℃ or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.

References

1

Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992, 360, 444–446.

2

Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nested fullerene-like structures. Nature 1993, 365, 113–114.

3

Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.; Margulis, L.; Tenne, R. Nested polyhedra of MX2 (M=W, Mo; X=S, Se) probed by high-resolution electron-microscopy and scanning-tunneling-microscopy. J. Am. Chem. Soc. 1994, 116, 1914–1917.

4

Nath, M.; Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842.

5

Schuffenhauer, C.; Popovitz-Biro, R.; Tenne, R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 2002, 12, 1587–1591.

6

Schuffenhauer, C.; Parkinson, B. A.; Jin-Phillipp, N. Y.; Joly-Pottuz, L.; Martin, J. M.; Popovitz-Biro, R.; Tenne, R. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small 2005, 1, 1100–1109.

7

Margolin, A.; Popovitz-Biro, R.; Albu-Yaron, A.; Rapoport, L.; Tenne, R. Inorganic fullerene-like nanoparticles of TiS2. Chem. Phys. Lett. 2005, 411, 162–166.

8

Coleman, K. S.; Sloan, J.; Hanson, N. A.; Brown, G.; Clancy, G. P.; Terrones, M.; Terrones, H.; Green, M. L. H. The formation of ReS2 inorganic fullerene-like structures containing Re4 parallelogram units and metal-metal bonds. J. Am. Chem. Soc. 2002, 124, 11580–11581.

9

Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. Rhenium(IV) sulfide nanotubes. J. Am. Chem. Soc. 2002, 124, 11582–11583.

10

Yella, A.; Therese, H. A.; Zink, N.; Panthoefer, M.; Tremel, W. Large scale MOCVD synthesis of hollow ReS2 nanoparticles with nested fullerene-like structure. Chem. Mater. 2008, 20, 3587–3593.

11

Albu-Yaron, A.; Arad, T.; Popovitz-Biro, R.; Bar-Sadan, M.; Prior, Y.; Jansen, M.; Tenne, R. Preparation and structural characterization of stable Cs2O closed-cage structures. Angew. Chem. Int. Ed. 2005, 44, 4169–4172.

12

Avivi, S.; Mastai, Y.; Gedanken, A. A new fullerene-like inorganic compound fabricated by the sonolysis of an aqueous solution of TlCl3. J. Am. Chem. Soc. 2000, 122, 4331–4334.

13

Sallacan, N.; Popovitz-Biro, R.; Tenne, R. Nanoparticles of CdI2 with closed cage structures obtained via electron-beam irradiation. Solid-State Sci. 2003, 5, 905–908.

14

Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron-nitride nanotubes. Science 1995, 269, 966–967.

15

Zhan, J. H.; Bando, Y.; Hu, J. P.; Golberg, D. Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg. Chem. 2004, 43, 2462–2464.

16

Fan, H. J.; Gosele, U.; Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 2007, 3, 1660–1671.

17

Rao, C. N. R.; Nath, M. Inorganic nanotubes. Dalton Trans. 2003, 1–24.

18

Remskar, M. Inorganic nanotubes. Adv. Mater. 2004, 16, 1497–1504.

19

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.

20

Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S. R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791–793.

21

Naffakh, M.; Martin, Z.; Fanegas, N.; Marco, C.; Gomez, M. A.; Jimenez, I. Influence of inorganic fullerene-like WS2 nanoparticies on the thermal behavior of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 2309–2321.

22

Hou, X. H.; Shan, C. X.; Choy, K. L. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles. Surf. Coat. Technol. 2008, 202, 2287–2291.

23

Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature 1999, 397, 114–114.

24

Golberg, D.; Bando, Y.; Stephan, O.; Kurashima, K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998, 73, 2441–2443.

25

Jose Yacaman, M.; Lopez, H.; Santiago, P.; Galvan, D. H.; Garzon, I. L.; Reyes, A. Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 1996, 69, 1065–1067.

26

Remskar, M.; Skraba, Z.; Regula, M.; Ballif, C.; Sanjines, R.; Levy, F. New crystal structures of WS2: Microtubes, ribbons, and ropes. Adv. Mater. 1998, 10, 246–249.

27

Feldman, Y.; Zak, A.; Popovitz-Biro, R.; Tenne, R. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid-State Sci. 2000, 2, 663–672.

28

Margolin, A.; Rosentsveig, R.; Albu-Yaron, A.; Popovitz-Biro, R.; Tenne, R. Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor. J. Mater. Chem. 2004, 14, 617–624.

29

Zak, A.; Genut, M.; Tenne, R.; Fleischer, N. Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized bed reactors. Nano, in press.

30

Song, X. C.; Zhao, Y.; Zheng, Y. F.; Yang, E. Large-scale synthesis of MoS2 bucky onions. Adv. Eng. Mater. 2007, 9, 96–98.

31

Yang, H. B.; Liu, S. K.; Lil, J. X.; Li, M. H.; Peng, G.; Zou, G. T. Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance. Nanotechnology 2006, 17, 1512–1519.

32

Albu-Yaron, A.; Arad, T.; Levy, M.; Popovitz-Biro, R.; Tenne, R.; Gordon, J. M.; Feuermann, D.; Katz, E. A.; Jansen, M.; Muhle, C. Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight. Adv. Mater. 2006, 18, 2993–2996.

33

Gordon, J. M.; Katz, E. A.; Feuermann, D.; Albu-Yaron, A.; Levy, M.; Tenne, R. Singular MoS2, SiO2 and Si nanostructures-synthesis by solar ablation. J. Mater. Chem. 2008, 18, 458–462.

34

Feuermann, D.; Gordon, J. M. High-irradiance reactors with unfolded aplanatic optics. Appl. Opt. 2008, 47, 5722–5727.

35

Zak, A.; Feldman, Y.; Alperovich, V.; Rosentsveig, R.; Tenne, R. Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc. 2000, 122, 11108–11116.

36

Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.

37

Feldman, Y.; Lyakhovitskaya, V.; Tenne, R. Kinetics of nested inorganic fullerene-like nanoparticle formation. J. Am. Chem. Soc. 1998, 120, 4176–4183.

38

Sarin, V. K. Morphological changes occurring during reduction of WO3. J. Mater. Chem. 1975, 10, 593–598.

39

Hu, J. Q.; Bando, Y.; Zhan, J. H.; Liu, Z. W.; Golberg, D. Uniform and high-quality submicrometer tubes of GaS layered crystals. Appl. Phys. Lett. 2005, 87, 153112.

Nano Research
Pages 416-424
Cite this article:
Wiesel I, Arbel H, Albu-Yaron A, et al. Synthesis of WS2 and MoS2 Fullerene-Like Nanoparticles from Solid Precursors. Nano Research, 2009, 2(5): 416-424. https://doi.org/10.1007/s12274-009-9034-7

859

Views

20

Downloads

62

Crossref

N/A

Web of Science

63

Scopus

0

CSCD

Altmetrics

Received: 15 January 2009
Revised: 22 February 2009
Accepted: 23 February 2009
Published: 01 May 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return