AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Simple and Rapid Synthesis of α-Fe2O3 Nanowires Under Ambient Conditions

Albert G. Nasibulin1( )Simas Rackauskas1Hua Jiang1Ying Tian1Prasantha Reddy Mudimela1Sergey D. Shandakov1,2Larisa I. Nasibulina1Jani Sainio3Esko I. Kauppinen1,4( )
NanoMaterials GroupDepartment of Applied PhysicsCenter for New MaterialsHelsinki University of TechnologyPuumiehenkuja 202150EspooFinland
Laboratory of Carbon NanoMaterialsDepartment of PhysicsKemerovo State UniversityKemerovo650043Russia
Laboratory of PhysicsHelsinki University of TechnologyOtakaari 1 M02150EspooFinland
VTT BiotechnologyBiologinkuja 702044EspooFinland
Show Author Information

Graphical Abstract

Abstract

We propose a simple method for the efficient and rapid synthesis of one-dimensional hematite (α-Fe2O3) nanostructures based on electrical resistive heating of iron wire under ambient conditions. Typically, 1–5 μm long α-Fe2O3 nanowires were synthesized on a time scale of seconds at temperatures of around 700 ℃. The morphology, structure, and mechanism of formation of the nanowires were studied by scanning and transmission electron microscopies, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman techniques. A nanowire growth mechanism based on diffusion of iron ions to the surface through grain boundaries and to the growing wire tip through stacking fault defects and due to surface diffusion is proposed.

Electronic Supplementary Material

Download File(s)
nr-2-5-373_ESM.pdf (869.8 KB)

References

1

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

2

Lu, J. G.; Chang, P.; Fan, Z. Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng. R 2006, 52, 49.

3

Fang, X.; Zhang, L. One-dimensional ZnS nanomaterials and nanostructures. J. Mater. Sci. Technol. 2006, 22, 721.

4

Law, M.; Goldberger, J.; Yang, P. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 2004, 34, 83–122.

5

Kolasinski, K. W. Current opinion in solid state and materials. Science 2006, 10, 182.

6

Cao, G.; Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interfac. Sci. 2008, 136, 45–64.

7

Satyanarayana, V. N. T.; Kuchibhatla, A. S.; Karakoti, D. B.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–691.

8

Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: Weinheim, 1996.

9

Khedr, M. H.; Bahgat, M.; Nasr, M. I.; Sedeek, E. K. CO2 decomposition over freshly reduced nanocrystalline Fe2O3. Colloid. Surfaces A: Physicochem. Eng. Aspects 2007, 302, 517–524.

10

Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. alpha-Fe2O3 nanotubes in gas sensor and lithium-lon battery applications. Adv. Mater. 2005, 17, 582–586.

11

Brown, A. S. C.; Hargreaves, J. S. J.; Rijniersce, B. A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. Cat. Lett. 1998, 53, 7–13

12

Khare, N.; Eggleston, C. M.; Lovelace, D. M.; Boese, S. W. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces. J. Colloid Interface Sci. 2006, 303, 404–414.

13

Srivastava, H.; Tiwari, P.; Srivastava, A. K; Nandedkar, R. V. Growth and characterization of alpha-Fe2O3 nanowires. J. Appl. Phys. 2007, 102, 054303.

14

Dong, W. T.; Zhu, C. S. Use of ethylene oxide in the sol-gel synthesis of alpha-Fe2O3 nanoparticles from Fe(III) salts. J. Mater. Chem. 2002, 12, 1676–1683.

15

Li, P.; Miser, D. E.; Rabiei, S.; Yadav, R. T.; Hajaligol, M. R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B Env. 2003, 43, 151–162.

16

Chueh, Y. -L.; Lai, M. -W.; Liang, J. -Q.; Chou, L. -J.; Wang Z. L. Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 2006, 16, 2243–2251.

17

Zhao, Y. M.; Li, Y. -H.; Ma, R. Z.; Roe, M. J.; McCartney, D. G.; Zhu, Y. Q. Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2006, 2, 422–427.

18

Qin, F.; Magtoto, N. P.; Garza, M.; Kelber, J. A. Oxide film growth on Fe(111) and scanning tunneling microscopy induced high electric field stress in Fe2O3/Fe(111). Thin Solid Films 2003, 444, 179–188.

19

Han, Q.; Xu, Y. Y.; Fu, Y. Y.; Zhang, H.; Wang, R. M.; Wang, T. M.; Chen, Z. Y. Defects and growing mechanisms of α-Fe2O3 nanowires. Chem. Phys. Lett. 2006, 431, 100–103.

20

Fu, Y. Y.; Wang, R. M.; Xu, J.; Chen, J.; Yan, Y.; Narlikar, A. V. Zhang, H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett. 2003, 379, 373–379.

21

Wen, X.; Wang, S.; Ding, Y.; Wang, Z. L.; Yang, S. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 2005, 109, 215–220.

22

Takagi, R. Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Japan 1957, 12, 1212–1218.

23

Mozetic, M.; Cvelbar, U.; Sunkara, M. K.; Vaddiraju, S. A method for the rapid synthesis of large ouantities of metal oxide nanowires at low temperatures. Adv. Mater. 2005, 17, 2138–2142.

24

Cvelbar, U.; Chen, Z.; Sunkara, M. K.; Mozetic, M. Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen Plasma. Small 2008, 4, 1610–1614.

25

Aronniemi, M.; Sainio, J.; Lahtinen, J. Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surface Sci. 2005, 578, 108–123.

26

Kawabe, T.; Shimomura, S.; Karasuda, T.; Tabata, K.; Suzuki, E.; Yamaguchi, Y. Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film. Surf. Sci. 2000, 448, 101–107.

27

de Faria, D. L. A.; Lopes, F. N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121.

28

de Faria, D. L. A.; Silva, V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectroscopy 1997, 28, 873.

29

Saunders, S. R. J.; Monteiro, M.; Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Progress Mater. Sci. 2008, 53, 775–837.

30

Sato, Y.; Young, D. J. High-temperature corrosion of lron at 900 ℃ in atmospheres containing HCl and H2O. Oxid. Met. 2001, 55, 243–260.

31

Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Examination of the oxidation of iron by oxygen using X-ray photoelectron spectroscopy and QUASES (TM). Surface Sci. 2004, 565, 151–162.

32

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

33

Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

34

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.

35

Chueh, Y. L.; Lai, M. -W.; Liang, J. -Q.; Chou, L. -J.; Wang Z. L. Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 2006, 16, 2243–2251.

36

Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 1975, 31, 20–30.

37

Young, D. High Temperature Oxidation and Corrosion of Metals; Elsevier Corrosion Series: Oxford, 2008.

38

Voss, D. A.; Butler, E. P.; Mitchell, T. E. The growth of hematite blades during the high-temperature oxidation of iron. Metall. Trans. A 1982, 13A, 929–935.

39

Raynaud, G. M.; Rapp, R. A. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals. Oxid. Met. 1984, 21, 89–102.

40

Hiralal, P.; Unalan, H. E.; Wijayantha, K. G. U.; Kursumovic, A.; JefFerson, D.; MacManus-Driscoll, J. L.; Amaratunga, G. A. J. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron. Nanotechnology 2008, 19, 455608.

Nano Research
Pages 373-379
Cite this article:
Nasibulin AG, Rackauskas S, Jiang H, et al. Simple and Rapid Synthesis of α-Fe2O3 Nanowires Under Ambient Conditions. Nano Research, 2009, 2(5): 373-379. https://doi.org/10.1007/s12274-009-9036-5

705

Views

23

Downloads

206

Crossref

N/A

Web of Science

217

Scopus

0

CSCD

Altmetrics

Received: 16 January 2009
Revised: 24 February 2009
Accepted: 01 March 2009
Published: 01 May 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return