PDF (652.7 KB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Synthesis of High Magnetic Moment CoFe Nanoparticles via Interfacial Diffusion in Core/Shell Structured Co/Fe Nanoparticles

Chao Wang1,2,Sheng Peng1,Lise-Marie Lacroix1Shouheng Sun1()
Department of ChemistryBrown UniversityProvidenceRhode Island02912USA
Current Address: Materials Science DivisionArgonne National LaboratoryArgonneIL60439USA

These two authors made an equal contribution to the work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We report the synthesis of high magnetic moment CoFe nanoparticles via the diffusion of Co and Fe in core/shell structured Co/Fe nanoparticles. In an organic solution, Co nanoparticles were coated with a layer of Fe to form a Co/Fe core/shell structure. Further raising the solution temperature led to inter-diffusion of Co and Fe and formation of CoFe alloy nanoparticles. These nanoparticles have high saturation magnetization of up to 192 emu/g CoFe and can be further stabilized by thermal annealing at 600 ℃.

Electronic Supplementary Material

Download File(s)
nr-2-5-380_ESM.pdf (172.7 KB)

References

1

Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

2

Lacheisserie, E. T.; Gignoux, D.; Schlenker, M. Magnetism: Materials and Spplications; Springer, 2004.

3

Bader, S. D. Colloquium: Opportunities in nano-magnetism. Rev. Mod. Phys. 2006, 78, 1–15.

4

Lu, A. -H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.

5

Lewin, M.; Carlesso, N.; Tung, C. -H.; Tang, X. -W.; Cory, D.; Scadden, D. T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 2000, 22, 47–52.

6

Zhao, M.; Deauregard, D. A.; Loizou, L.; Davletov, B.; Brindle, K. M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 2001, 7, 1241–1244.

7

Seo, W. S.; Lee, J. H.; Sun, X.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; Mcconnell, M. V.; Nishimura, D. G.; Dai, H. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

8

Peng, S.; Wang, C.; Xie, J.; Sun, S. Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 2006, 128, 10676–10677.

9

Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. Au-Fe3O4 dumbbell nanoparticles as dual-functional Probes. Angew. Chem. Int. Ed. 2008, 47, 173–176.

10

Sun, C.; Lee, J.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265.

11

Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nat. Mater. 2005, 4, 750–753.

12

Chaubey, G. S.; Barcena, C.; Paudyal, N.; Rong, C.; Gao, J.; Sun, S.; Liu, J. P. Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc. 2007, 129, 7214–7215.

13

Kim, J.; Rong, C.; Lee, Y.; Liu, J. P.; Sun, S. From core/shell structured FePt/FeO/MgO to ferromagnetic FePt nanoparticles. Chem. Mater. 2008, 20, 7242–7245.

14

Wang, C.; Peng, S.; Chan, R.; Sun, S. Synthesis of AuAg alloy nanoparticles from core/shell structured Ag/Au. Small, in press, DOI:10.1002/smll.200801169.

15

Hütten, A.; Sudfeld, D.; Ennen, I.; Reiss, G.; Wojczykowski, K.; Jutzi, P. Ferromagnetic FeCo nanoparticles for biotechnology. J. Mag. Mag. Mater. 2005, 293, 93–101.

Nano Research
Pages 380-385
Cite this article:
Wang C, Peng S, Lacroix L-M, et al. Synthesis of High Magnetic Moment CoFe Nanoparticles via Interfacial Diffusion in Core/Shell Structured Co/Fe Nanoparticles. Nano Research, 2009, 2(5): 380-385. https://doi.org/10.1007/s12274-009-9037-4
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return