PDF (717 KB)
Collect
Submit Manuscript
Research Article | Open Access

Thermoelectric Properties of p-Type PbSe Nanowires

Wenjie Liang1,3Oded Rabin1,4Allon I. Hochbaum1Melissa Fardy1Minjuan Zhang2Peidong Yang1()
Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
Materials Research DepartmentToyota Technical CenterToyota Motor Engineering & Manufacturing North America (TEMA) Inc.1555 Woodridge Ave.Ann ArborMI48105USA
Current Address: Institute of PhysicsChinese Academy of SciencesBeijing100080China
Current Address: Department of Materials Science and Engineeringthe Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkMD20742USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.

References

1

Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.

2

Goldsmid, H. Thermoelectric Refrigeration; Plenum Press: New York, 1964.

3

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

4

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.

5

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

6

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 507–602.

7

Hochbaum, A.I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnet, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

8

Boukai, A.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 167–169.

9

Wang, R. Y.; Feser, J. P.; Lee, J. S.; Talapin D. V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288.

10

Hsu, K.F.; Loo, S. Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

11

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D; Chen, X. Y.; Liu, J. M.; Dresselhaus, M. S; Chen, G.; Ren, Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320, 634–638.

12

Cho, K.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

13

Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938.

14

Moore, A. L.; Saha, S. K.; Prasher, R. S.; Li, S. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 2008, 93, 083112.

15

Liang, W. J.; Hochbaum, A. I.; Fardy, M.; Rabin, O.; Zhang, M. J.; Yang, P. D. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693.

16

Abrams, H.; Tauber, R. N. Thermoelectric power of single-crystal p-type PbSe. J. Appl. Phys. 1969, 40, 3868–3870.

17

Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

18

Fardy, M. Hochbaum, A.; Goldberger, J.; Zhang, M. M.; Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047–3051.

19

Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim. D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 2003, 125, 881–888.

20

Allgaier, R.; Scanlon, W. Moblity of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2-degrees-K. Phys. Rev. 1958, 111, 1029–1037.

21

Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. A simple route to annihilate defects in silicon nanowires. Chem. Phys. Lett. 2000, 328, 346–349.

22

Gray, D. E. American Institute of Physics Handbook, 3rd ed; McGraw-Hill: New York, 1972.

Nano Research
Pages 394-399
Cite this article:
Liang W, Rabin O, Hochbaum AI, et al. Thermoelectric Properties of p-Type PbSe Nanowires. Nano Research, 2009, 2(5): 394-399. https://doi.org/10.1007/s12274-009-9039-2
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return