Graphical Abstract

The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.
Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.
Goldsmid, H. Thermoelectric Refrigeration; Plenum Press: New York, 1964.
Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.
Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.
Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.
Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 507–602.
Hochbaum, A.I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnet, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.
Boukai, A.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 167–169.
Wang, R. Y.; Feser, J. P.; Lee, J. S.; Talapin D. V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288.
Hsu, K.F.; Loo, S. Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.
Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D; Chen, X. Y.; Liu, J. M.; Dresselhaus, M. S; Chen, G.; Ren, Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320, 634–638.
Cho, K.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.
Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938.
Moore, A. L.; Saha, S. K.; Prasher, R. S.; Li, S. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 2008, 93, 083112.
Liang, W. J.; Hochbaum, A. I.; Fardy, M.; Rabin, O.; Zhang, M. J.; Yang, P. D. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693.
Abrams, H.; Tauber, R. N. Thermoelectric power of single-crystal p-type PbSe. J. Appl. Phys. 1969, 40, 3868–3870.
Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.
Fardy, M. Hochbaum, A.; Goldberger, J.; Zhang, M. M.; Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047–3051.
Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim. D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 2003, 125, 881–888.
Allgaier, R.; Scanlon, W. Moblity of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2-degrees-K. Phys. Rev. 1958, 111, 1029–1037.
Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. A simple route to annihilate defects in silicon nanowires. Chem. Phys. Lett. 2000, 328, 346–349.
Gray, D. E. American Institute of Physics Handbook, 3rd ed; McGraw-Hill: New York, 1972.