AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis and Characterization of Bionanoparticle Silica Composites and Mesoporous Silica with Large Pores

Zhongwei Niu1Saswat Kabisatpathy1Jinbo He2L. Andrew Lee1Jianhua Rong1Lin Yang3Godfrey Sikha4Branko N. Popov4Todd S. Emrick2Thomas P. Russell2Qian Wang1( )
Department of Chemistry and Biochemistry and NanocenterUniversity of South CarolinaColumbiaSC29208USA
Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstMA01003USA
Brookhaven National LaboratoryUptonNY11973USA
Department of Chemical EngineeringUniversity of South CarolinaColumbiaSC29208USA
Show Author Information

Graphical Abstract

Abstract

A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N2 adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced, . This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.

Electronic Supplementary Material

Download File(s)
12274_2009_9043_MOESM1_ESM.pdf (305.2 KB)

References

1

Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38, 56–77.

2

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

3

Yiu, H. H. P.; Wright, P. A. Enzymes supported on ordered mesoporous solids: A special case of an inorganic-organic hybrid. J. Mater. Chem. 2005, 15, 3690–3700.

4

Hartmann, M. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 2005, 17, 4577–4593.

5

Lu, Y. F.; Yang, Y.; Sellinger, A.; Lu, M. C.; Huang, J. M.; Fan, H. Y.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker, C. J. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 2001, 410, 913–917.

6

Yang, P. D.; Zhao, D. Y.; Chmelka, B. F.; Stucky, G. D. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 1998, 10, 2033–2036.

7

Mal, N. K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003, 421, 350–353.

8

El-Safty, S. A. Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J. Porous Mater. 2008, 15, 369–387.

9

Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 2008, 20, 682–737.

10

Wan, Y.; Shi, Y. F.; Zhao, D. Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945.

11

Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 2003, 125, 821–829.

12

Fan, J.; Yu, C. Z.; Lei, J.; Zhang, Q.; Li, T. C.; Tu, B.; Zhou, W. Z.; Zhao, D. Y. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc. 2005, 127, 10794–10795.

13

Douglas, T.; Young, M. Viruses: Making friends with old foes. Science 2006, 312, 873–875.

14

Lee, L. A.; Wang, Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2006, 2, 137–149.

15

Kramer, R. M.; Li, C.; Carter, D. C.; Stone, M. O.; Naik, R. R. Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soc. 2004, 126, 13282–13286.

16

Meldrum, F. C.; Heywood, B. R.; Mann, S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 1992, 257, 522–523.

17

Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T. The small heat shock protein cage from methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003, 3, 1573–1576.

18

Seebeck, F. P.; Woycechowsky, K. J.; Zhuang, W.; Rabe, J. P.; Hilvert, D. A simple tagging system for protein encapsulation. J. Am. Chem. Soc. 2006, 128, 4516–4517.

19

Domingo, G. J.; Orru, S.; Perham, R. N. Multiple display of peptides and proteins on a macromolecular scaffold derived from a multienzyme complex. J. Mol. Biol. 2001, 305, 259–267.

20

Paavola, C. D.; Chan, S. L.; Li, Y.; Mazzarella, K. M.; McMillan, R. A.; Trent, J. D. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 2006, 17, 1171–1176.

21

Campos, S. K.; Barry, M. A. Current advances and future challenges in adenoviral vector biology and targeting. Curr. Gene Ther. 2007, 7, 189–204.

22

Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 2006, 58, 1505–1522.

23

Ramqvist, T.; Andreasson, K.; Dalanis, T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin. Biol. Ther. 2007, 7, 997–1007.

24

Canizares, M. C.; Nicholson, L.; Lomonossoff, G. P. Use of viral vectors for vaccine production in plants. Immunol. Cell Biol. 2005, 83, 263–270.

25

Streatfield, S. J. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol. Cell Biol. 2005, 83, 257–262.

26

Niu, Z.; Bruckman, M.; Kotakadi, V. S.; He, J.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem. Commun. 2006, 3019-3021.

27

Mao, C.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.

28

Niu, Z.; Bruckman, M.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.

29

Rong, J. H.; Lee, L. A.; Li, K.; Harp, B.; Mello, C. M.; Niu, Z. W.; Wang, Q. Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 2008, 5185-5187.

30

Kaur, G.; Valarmathi, M. T.; Potts, J. D.; Wang, Q. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials 2008, 29, 4074–4081.

31

Li, T.; Niu, Z. W.; Emrick, T.; Russell, T. R.; Wang, Q. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small 2008, 4, 1624–1629.

32
Lee, L. A.; Niu, Z.; Wang, Q. Viruses and virus-like protein assemblies Chemically programmable nanoscale building blocks. Nano Res. accepted.
33

Rong, J.; Oberbeck, F.; Wang, X.; Li, X.; Oxsher, J.; Niu, Z.; Wang, Q. Tobacco mosaic virus templated synthesis of one dimensional inorganic/polymer hybrid fibres. J. Mater. Chem. 2009, 19, 2841–2845.

34

Lin, Y.; Boker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 434, 55–59.

35

Russell, J. T.; Lin, Y.; Böker, A.; Long, S.; Carl, P.; Zettl, H.; He, J.; Sill, K.; Tangiraia, R.; Emrick, T.; Littrell, K.; Thiyagarajan, P.; Cookson, D.; Fery, A.; Wang, Q.; Russell, T. P. Self-assembly and cross-linking of bionanoparticles at liquid liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426.

36

Avnir, D.; Coradin, T.; Lev, O.; Livage, J. Recent bioapplications of sol-gel materials. J. Mater. Chem. 2006, 16, 1013–1030.

37

Ferrer, M. L.; del Monte, F.; Levy, D. A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins. Chem. Mater. 2002, 14, 3619–3621.

38

Gill, I.; Ballesteros, A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 1998, 120, 8587–8598.

39

Lan, E. H.; Dunn, B.; Valentine, J. S.; Zink, J. I. Encapsulation of the ferritin protein in sol-gel derived silica glasses. J. Sol-Gel Sci. Techn. 1996, 7, 109–116.

40

Tartaj, P.; Gonzalez-Carreno, T.; Ferrer, M. L.; Serna, C. J. Metallic nanomagnets randomly dispersed in spherical colloids: Toward a universal route for the preparation of colloidal composites containing nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 6304–6307.

41

Fowler, C. E.; Shenton, W.; Stubbs, G.; Mann, S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv. Mater. 2001, 13, 1266–1269.

42

Royston, E.; Lee, S. Y.; Culver, J. N.; Harris, M. T. Characterization of silica-coated tobacco mosaic virus. J. Coll. Int. Sci. 2006, 298, 706–712.

43

Klug, A.; Finch, J. T.; Franklin, R. E. Structure of turnip yellow mosaic virus. Nature 1957, 179, 683–684.

44

Canady, M. A.; Larson, S. B.; Day, J.; McPherson, A. Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 1996, 3, 771–781.

45

Wang, Q.; Raja, K. S.; Janda, K. D.; Lin, T. W.; Finn, M. G. Blue fluorescent antibodies as reporters of steric accessibility in virus conjugates. Bioconjugate Chem. 2003, 14, 38–43.

46

Wang, Q.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.

47

Wang, Q.; Kaltgrad, E.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Wild-type cowpea mosaic virus. Chem. Biol. 2002, 9, 805–811.

48

Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. Bioconjugation by copper(Ⅰ)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.

49

Klug, A. The tobacco mosaic virus particle: Structure and assembly. Philos. Trans. R. Soc. B 1999, 354, 531–535.

50

Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 1999, 11, 253–256.

51

Fonoberov, V. A.; Balandin, A. A. Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications. Nano Lett. 2005, 5, 1920–1923.

52

Knez, M.; Sumser, M.; Bittner, A. M.; Wege, C.; Jeske, H.; Martin, T. P.; Kern, K. Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater. 2004, 14, 116–124.

53

Yi, H.; Nisar, S.; Lee, S. Y.; Powers, M. A.; Bentley, W. E.; Payne, G. F.; Ghodssi, R.; Rubloff, G. W.; Harris, M. T.; Culver, J. N. Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett. 2005, 5, 1931–1936.

54

Yi, H.; Rubloff, G. W.; Culver, J. N. TMV microarrays: Hybridization-based assembly of DNA-programmed viral nanotemplates. Langmuir 2007, 23, 2663–2667.

55

Tan, W. S.; Lewis, C. L.; Horelik, N. E.; Pregibon, D. C.; Doyle, P. S.; Yi, H. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization. Langmuir 2008, 24, 12483–12488.

56

Balci, S.; Leinberger, D. M.; Knez, M.; Bittner, A. M.; Boes, F.; Kadri, A.; Wege, C.; Jeske, H.; Kern, K. Printing and aligning mesoscale patterns of tobacco mosaic virus on surfaces. Adv. Mater. 2008, 20, 2195–2200.

57

Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem. Mater. 1998, 10, 279–285.

58

Douglas, T.; Dickson, D. P. E.; Betteridge, S.; Charnock, J.; Garner, C. D.; Mann, S. Synthesis and structure of an iron(Ⅲ) sulfide-ferritin bioinorganic nanocomposite. Science 1995, 269, 54–57.

59

Stark, V.; Douglas, T. Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem. 1999, 39, 1828–1830.

60

Kuang, D. B.; Brezesinski, T.; Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534–10535.

61

Svergun, D. I.; Koch, M. H. J. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 2003, 66, 1735–1782.

62

Nedoluzhko, A.; Douglas, T. Ordered association of tobacco mosaic virus in the presence of divalent metal ions. J. Inorg. Biochem. 2001, 84, 233–240.

63

Niu, Z. W.; Bruckman, M. A.; Li, S. Q.; Lee, L. A.; Lee, B.; Pingali, S. V.; Thiyagarajan, P.; Wang, Q. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir 2007, 23, 6719–6724.

64

Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M. A.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733.

Nano Research
Pages 474-483
Cite this article:
Niu Z, Kabisatpathy S, He J, et al. Synthesis and Characterization of Bionanoparticle Silica Composites and Mesoporous Silica with Large Pores. Nano Research, 2009, 2(6): 474-483. https://doi.org/10.1007/s12274-009-9043-6

742

Views

18

Downloads

31

Crossref

N/A

Web of Science

29

Scopus

0

CSCD

Altmetrics

Received: 21 December 2008
Revised: 15 March 2009
Accepted: 24 March 2009
Published: 01 June 2009
© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009
Return