AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Exploring the Transferability of Large Supramolecular Assemblies to the Vacuum-Solid Interface

Wei Xu1,§Mingdong Dong1Henkjan Gersen1,#Socorro Vázquez-Campos2Xavier Bouju3Erik Lægsgaard1Ivan Stensgaard1Mercedes Crego-Calama2,David N Reinhoudt2Trolle R Linderoth1( )Flemming Besenbacher1( )
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityNy Munkegade8000Aarhus C, Denmark
Laboratory of Supramolecular Chemistry and Technology, Materials Science and Technology of Polymers, MESA+ Institute for NanotechnologyUniversity of Twente, P.O. Box217, 7500AE Enschede, The Netherlands
Nanoscience groupCEMES-CNRS, 29 rue Jeanne Marvig31055Toulouse, France

§ Current address: Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

# Current address: Nanophysics and Soft Matter Group, Department of Physics, University of Bristol, Tyndall Avenue, BS8 1TL Bristol, UK

Current address: Holst Center (IMEC-NL), High Tech Campus 48, 5656 AE Eindhoven, The Nethe lands

Show Author Information

Graphical Abstract

Abstract

We present an interplay of high-resolution scanning tunneling microscopy imaging and the corresponding theoretical calculations based on elastic scattering quantum chemistry techniques of the adsorption of a gold-functionalized rosette assembly and its building blocks on a Au(111) surface with the goal of exploring how to fabricate functional 3-D molecular nanostructures on surfaces. The supramolecular rosette assembly stabilized by multiple hydrogen bonds has been sublimed onto the Au(111) surface under ultra-high vacuum conditions; the resulting surface nanostructures are distinctly different from those formed by the individual molecular building blocks of the rosette assembly, suggesting that the assembly itself can be transferred intact to the surface by in situ thermal sublimation. This unanticipated result will open up new perspectives for growth of complex 3-D supramolecular nanostructures at the vacuum-solid interface.

References

1

Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C. Z.; Brune, H.; Gunter, P.; Kern, K. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 2002, 124, 7991-8000.

2

Xu, W.; Kelly, R. E. A.; Otero, R.; Schöck, M.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Probing the hierarchy of thymine-thymine interactions in self-assembled structures by manipulation with scanning tunneling microscopy. Small 2007, 3, 2011-2014.

3

Otero, R.; Lukas, M.; Kelly, R. E. A.; Xu, W.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 2008, 319, 312-315.

4

Chen, Q.; Richardson, N. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nat. Mater. 2003, 2, 324-328.

5

Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029-1031.

6

Kong, X. H.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C. H-bond switching mediated multiple flexibility in supramolecular host-guest architectures. J. Phys. Chem. C 2007, 111, 17382-17387.

7

Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest, J. D.; Nanci, A.; Perepichka, D. F.; Rosei, F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J. Am. Chem. Soc. 2006, 128, 4212-4213.

8

Wintjes, N.; Bonifazi, D.; Cheng, F.; Kiebele, A.; Stöhr, M.; Jung, T.; Spillmann, H.; Diederich, F. A supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 2007, 46, 4089-4092.

9

Schiffrin, A.; Riemann, A.; Auwärter, W.; Pennec, Y.; Weber-Bargioni, A.; Cvetko, D.; Cossaro, A.; Morgante, A.; Barth, J. V. Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc. Natl. Acad. Sci. USA 2007, 104, 5279-5284.

10

Spillmann, H.; Kiebele, A.; Stohr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F. Y.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275-279.

11

Kelly, R. E. A.; Xu, W.; Lukas, M.; Otero, R.; Mura, M.; Lee, Y.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. An investigation into the interactions between self-assembled adenine molecules and a Au(111) surface. Small 2008, 4, 1494-1500.

12

Schnadt, J.; Rauls, E.; Xu, W.; Vang, R. T.; Knudsen, J.; Laegsgaard, E.; Li, Z.; Hammer, B.; Besenbacher, F. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 2008, 100, 046103.

13

Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671-679.

14

De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139-150.

15

Wan, L. J. Fabricating and controlling molecular self-organization at solid surfaces: Studies by scanning tunneling microscopy. Acc. Chem. Res. 2006, 39, 334-342.

16

Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497-525.

17

Prins, L. J.; De Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181-184.

18

Vázquez-Campos, S.; Péter, M.; Dong, M.; Xu, S.; Xu, W.; Gersen, H.; Linderoth, T. R.; Schönherr, H.; Besenbacher, F.; Crego-Calama, M.; Reinhoudt, D. N. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface. Langmuir 2007, 23, 10294-10298.

19

Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Lægsgaard, E.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854-858.

20

Xu, W.; Dong, M.; Vázquez-Campos, S.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Crego-Calama, M.; Reinhoudt, D. N.; Linderoth, T. R.; Besenbacher, F. Enhanced stability of large molecules vacuum-sublimated onto Au(111) achieved by incorporation of coordinated Au-atoms. J. Am. Chem. Soc. 2007, 129, 10624-10625.

21

Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Influence of alkyl side chains on hydrogen-bonded molecular surface nanostructures. Small 2008, 4, 1620-1623.

22

Mullen, T. J.; Dameron, A. A.; Weiss, P. S. Directed assembly and separation of self-assembled monolayers via electrochemical processing. J. Phys. Chem. B 2006, 110, 14410-14417.

23

Monnell, J. D.; Stapleton, J. J.; Dirk, S. M.; Reinerth, W. A.; Tour, J. M.; Allara, D. L.; Weiss, P. S. Relative conductances of alkaneselenolate and alkanethiolate monolayers on Au{111}. J. Phys. Chem. B 2005, 109, 20343-20349.

24

Kumar, A. S.; Ye, T.; Takami, T.; Yu, B. -C.; Flatt, A. K.; Tour, J. M.; Weiss, P. S. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 2008, 8, 1644-1648.

25

Bouju, X.; Joachim, C.; Girard, C.; Tang, H. Mechanics of (Xe) N atomic chains under STM manipulation. Phys. Rev. B 2001, 63, 085415.

26

Ample, F.; Joachim, C. A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 2006, 600, 3243-3251.

27

Sautet, P.; Joachim, C. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev. B 1988, 38, 12238-12247.

28

Pizzagali, L.; Joachim, C.; Bouju, X.; Girard, C. The resistance of a (Xe)n atomic wire. Europhys. Lett. 1997, 38, 97-102.

29

Seto, C. T.; Whitesides, G. M. Synthesis, characterization, and thermodynamic analysis of a 1 + 1 self-assembling structure based on the cyanuric acid·cntdot·melamine lattice. J. Am. Chem. Soc. 1993, 115, 1330-1340.

30

Prins, L. J.; Neuteboom, E. E.; Paraschiv, V.; Crego-Calama, M.; Timmerman, P.; Reinhoudt, D. N. Kinetic stabilities of double, tetra-, and hexarosette hydrogen-bonded assemblies. J. Org. Chem. 2002, 67, 4808-4820.

31

Staniec, P. A.; Perdigão, L. M. A.; Rogers, B. L.; Champness, N. R.; Beton P. H. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(111). J. Phys. Chem. C 2007, 111, 886-893.

32

van Manen, H. J.; Paraschiv, V.; Garcia-Lopez, J. J.; Schonherr, H.; Zapotoczny, S.; Vancso, G. J.; Crego-Calama, M.; Reinhoudt, D. N. Hydrogen-bonded assemblies as a scaffold for metal-containing nanostructures: From zero to two dimensions. Nano Lett. 2004, 4, 441-446.

33

Lægsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537-3542.

Nano Research
Pages 535-542
Cite this article:
Xu W, Dong M, Gersen H, et al. Exploring the Transferability of Large Supramolecular Assemblies to the Vacuum-Solid Interface. Nano Research, 2009, 2(7): 535-542. https://doi.org/10.1007/s12274-009-9051-6

766

Views

16

Downloads

11

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 01 April 2009
Revised: 01 May 2009
Accepted: 01 May 2009
Published: 01 July 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return