AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Direct Imaging of Titania Nanotubes Located in Mouse Neural Stem Cell Nuclei

Yanli Wang1Jia Wang1Xiaoyong Deng1Jiao Wang2Haifang Wang1Minghong Wu1Zheng Jiao1( )Yuanfang Liu1,3( )
Institute of Nanochemistry and NanobiologyShanghai UniversityShanghai200444China
Institute of Systems BiologyShanghai UniversityShanghai200444China
Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Titania nanotubes (TiO2-NTs) are a potential drug vehicle for use in nanomedicine. To this end, a preliminary study of the interaction of a model cell with TiO2-NTs has been carried out. TiO2-NTs were first conjugated with a fluorescent label, fluorescein isothiocyanate (FITC). FITC-conjugated titania nanotubes (FITC-TiO2-NTs) internalized in mouse neural stem cells (NSCs, line C17.2) can be directly imaged by confocal microscopy. The confocal imaging showed that FITC-TiO2-NTs readily entered into the cells. After co-incubation with cells for 24 h, FITC-TiO2-NTs localized around the cell nucleus without crossing the karyotheca. More interestingly, the nanotubes passed through the karyotheca entering the cell nucleus after co-incubation for 48 h. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were also employed in tracking the nanotubes in the cell. These results will be of benefit in future studies of TiO2-NTs for use as a drug vehicle, particularly for DNA-targeting drugs.

References

1

Peer, D.; Karp, J. H.; Hong, S.; Frokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

2

Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311-330.

3

Jain, K. K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta. 2005, 358, 37-54.

4

Nie, S.; Xing, Y.; Kim, G. J.; Simons J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257-288.

5

Rawat, M.; Singh, D.; Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006, 29, 1790-1798.

6

Chavanpatil, M. D.; Khdair, A.; Panyam, J. Nanoparticles for cellular drug delivery: Mechanisms and factors influencing delivery. J. Nanosci. Nanotechnol. 2006, 6, 2651-2663.

7

Choi, M.; Katie, J. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007, 7, 3759-3765.

8

Loo, C.; Lowery, A.; Halas, West, N. J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709-711.

9

Pantarotto, D.; Briand, J.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16-17.

10

Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713-717.

11

Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 2007, 18, 1490-1497.

12

Roy, S. C.; Paulose, M.; Grimes, C. A. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 2007, 28, 4667-4672.

13

Cooper, L. F.; Zhou, Y.; Takebe, J.; Guo, J.; Abron, A.; Holme'n, A.; Ellingsen, J. E. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c. p. titanium endosseous implants. Biomaterials 2006, 27, 926-936.

14

Kommireddy, D. S.; Sriram, S. M.; Lvov, Y. M.; Mills, D. K. Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 2006, 27, 4296-4303.

15

Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nano-composites. J. Mater. Chem. 2005, 15, 3559-3592.

16

Guzman, R.; Uchida, N.; Bliss, T. M.; He, D.; Christopherson, K. K.; Stellwagen, D. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. USA 2007, 104, 10211-10216.

17

Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160-3163.

18

Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307-1311.

19

Kasuga, T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006, 496, 141-145.

20

Santra, S.; Liesenfeld, B.; Bertolino, C.; Dutta, D.; Cao, Z.; Tan, W.; Moudgil, B. M.; Mericle, R. A. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability. J. Lumin. 2006, 117, 75-82.

21

Qu, Y.; Li, X.; Li, R.; Yan, H.; Ouyang, X.; Wang, X. Preparation and characterization of the TiO2 ultrafine particles by detonation method. Mater. Res. Bull. 2008, 43, 97-103.

22

Li, X.; Qu, Y.; Sun, G.; Jiang, D.; Ouyang, X. Study on the lattice distortion of the as-prepared nanosized TiO2 particles via detonation method. J. Phys. Chem. Solids 2007, 68, 2405-2410.

23

Jena, B. P. Cell secretion machinery: Studies using the AFM. Ultramicroscopy 2006, 106, 663-669.

24

Jeremic, A.; Kelly, M.; Cho, W. J.; Cho, S. J.; Horber, J. K. H.; Jena, B. P. Calcium drives fusion of SNARE-apposed bilayers. Cell Biol. Int. 2004, 28, 19-31.

25

Binnig, G.; Quate, C. F.; Gerber, C. H. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930-933.

26

Singh, S.; Shi, T.; Duffin, R.; Albrecht, C.; Van Berlo, D.; Höhr, D. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles. Toxicol. Appl. Pharmacol. 2007, 222, 141-151.

27

Chen, M.; Mikecz, A. Uptake and cytotoxity of nanoparticles. In Nanotoxicology; Zhao, Y.; Nalwa, H. S., Eds.; American Scientific Publishers : California, 2007, pp. 75-90.

28

Fuente, J. M.; Berry, C. C. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjugate Chem. 2005, 16, 1176-1180.

29

Khine, M.; Lau, A.; Ionescu-Zanetti, C.; Seo, J.; Lee, L. P. A single cell electroporation chip. Lab. Chip 2005, 5, 38-43.

30

Morris, M. C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 2001, 19, 1173-1176.

31

Li, W.; Chen, C.; Ye, C.; Wei, T.; Zhao, Y.; Lao, F.; Chen, Z.; Meng, H.; Gao, Y.; Yuan, H. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 2008, 19, 145102.

32

Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 2004, 43, 5242-5246.

33

Cheng, J.; Shiral Fernando, K. A.; Monica Veca, L.; Sun, Y.; Lamond, A.; . Lam, Y.; Cheng, S. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2008, 2, 2085-2094.

34

Bhattacharya, R.; Mukherjee, P.; Xiong, Z.; Atala, A.; Soker, S.; Mukhopadhyay, D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004, 4, 2479-2481.

35

Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644-10654.

36

Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941-1949.

37

Male, K. B.; Lachance, B.; Hrapovic, S.; Sunahara, G.; Luong, J. H. T. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal. Chem. 2008, 80, 5487-5493.

38

Shi, X.; Wang, S.; Sun, H.; Baker, J. R. Jr. Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 2007, 3, 71-74.

39

Li, J. J.; Zou, L.; Hartono, D.; Ong, C. N.; Bay, B. H.; Yung, L. Y. L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138-142.

40

Jia, H.Y.; Liu, Y.; Zhang, X. J.; Han, L.; Du, L.B.; Tian, Q.; Xu, Y. C. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc. 2009, 131, 40-41.

41

Suh, W. H.; Suh, Y.; Stucky, G. D. Multifunctional nanosystems at the interface of physical and life sciences. Nano Today 2009, 4, 27-36.

42

Popat, K. C.; Eltgroth, M. T.; Tempa, J.; Grimes, C. A.; Desai, T. A. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 2007, 3, 1878-1881.

43

Park, T. G.; Jeong, J. H.; Kim, S. W. Current status of polymeric gene delivery systems. Adv. Drug. Deliv. Rev. 2006, 58, 467-486.

44

Wang, Z.; Zhao, Y.; Ren, L.; Jin, L.; Sun, L.; Yin, P.; Zhang, Y.; Zhang, Q. Novel gelatin-siloxane nanoparticles decorated by Tat peptide as vectors for gene therapy. Nanotechnology 2008, 19, 445103.

Nano Research
Pages 543-552
Cite this article:
Wang Y, Wang J, Deng X, et al. Direct Imaging of Titania Nanotubes Located in Mouse Neural Stem Cell Nuclei. Nano Research, 2009, 2(7): 543-552. https://doi.org/10.1007/s12274-009-9052-5

680

Views

18

Downloads

20

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 20 March 2009
Revised: 30 April 2009
Accepted: 02 May 2009
Published: 01 July 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return