AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (741.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tuning Reaction Processes for the Synthesis of Micron and Nanometer Sized, Single Crystalline Lamellae of Copper 7, 7, 8, 8-tetracyano-p-quinodimethane (Phase Ⅱ) with Large Area

Yaling Liu1,2Zhuoyu Ji1,3Hongxiang Li1( )Wenping Hu1( )Yunqi Liu1Daoben Zhu1
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of SciencesBeijing100190China
National Center for Nanoscience and TechnologyBeijing100190China
Department of Compound Semiconductor Devices and CircuitInstitute of Microelectronics, Chinese Academy of SciencesBeijing100029China
Show Author Information

Graphical Abstract

Abstract

Two simple methods have been demonstrated to obtain large area, single crystalline lamellae of copper-7, 7, 8, 8-tetracyanoquinodimethane (CuTCNQ). The formation of the lamellae was a result of fine tuning of the processes during the synthesis processes of CuTCNQ phase Ⅱ. This facile synthesis of large area single crystalline lamellae suggests bright prospects for the study and understanding of the electrical switching of CuTCNQ by using single crystals of its phase Ⅱ, and future applications of the material in memory and switching devices.

Electronic Supplementary Material

Download File(s)
nr-2-8-630_ESM.pdf (347 KB)

References

1

Potember, R. S.; Hoffman, R. C.; Poehler, T. O. Molecular electronics. Johns Hopkins APL Tech. Dig. 1986, 7, 129–141.

2

Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R. Whence molecular electronics? Science 2004, 306, 2055–2056.

3
Borissov, M. Molecular electronics. In Proceedings of the 4th International School on Condensed Matter Physics, Varna, Bulgaria, September 18–27, 1986; World Scientific Pub Co. : Singapore, 1987.
4

Mahler, G.; May, V.; Schreiber, M. Molecular Electronics: Properties, Dynamics, and Applications; CRC Press: New York, 1996.

5

Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming; World Scientific: Singapore, N. J., 2003.

6

Jortner, J.; Ratner, M. Molecular Electronics; Blackwell Science Inc, Osney Mead, Oxford [England]; Malden, MA, USA, 1997.

7

Potember, R. S.; Poehler, T. O.; Cowan, D. O. Electrical switching and memory phenomena in Cu–TCNQ thin films. Appl. Phys. Lett. 1979, 34, 405–407.

8

Potember, R. S.; Poehler, T. O.; Rappa, A.; Cowan, D. O.; Bloch, A. N. A reversible field induced phase transition in semiconducting films of silver and copper TNAP radical-ion salts. J. Am. Chem. Soc. 1980, 102, 3659–3660.

9

Potember, R. S.; Poehler, T. O.; Rappa, A.; Cowan, D. O.; Bloch, A. N. A current-controlled electrically switched memory state in silver and copper-TCNQF4 radical-ion salts. Synth. Met. 1982, 4, 371–380.

10

Potember, R. S.; Poehler, T. O.; Benson, R. C. Optical switching in semiconductor organic thin films. Appl. Phys. Lett. 1982, 41, 548–550.

11

Potember, R. S.; Poehler, T. O.; Cowan, D. O.; Carter, F. L.; Brant, P. I. In Molecular Electronic Devices; Carter, F. L., Ed.; Marcel Dekker: New York, 1982, p. 73.

12

Benson, R. C.; Hoffman, R. C.; Potember, R. S.; Bourkoff, E.; Poehler, T. O. Spectral dependence of reversible optically induced transitions in organometallic compounds. Appl. Phys. Lett. 1983, 42, 855–857.

13

Müller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ non-volatile memories for integration in the CMOS backend-of-line: Preparation from gas/solid reaction and downscaling to an area of 0.25 μm2. Solid-State Electron. 2006, 50, 601–605.

14

Müller, R.; Genoe, J.; Heremans, P. Nonvolatile Cu/CuTCNQ/Al memory prepared by current controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile. Appl. Phys. Lett. 2006, 88, 242105.

15

Müller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ integrated in complementary metal oxide semiconductor copper back end-of-line for nonvolatile memories. Appl. Phys. Lett. 2006, 89, 223501.

16

Müller, R.; Naulaerts, R.; Billen, J.; Genoe, J.; Heremans, P. CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode. Appl. Phys. Lett. 2007, 90, 063503.

17

Xiao, K.; Ivanov, I. N.; Puretzky, A. A.; Liu, Z.; Geohegan, D. B. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 2006, 18, 2184–2188.

18

Xiao, K.; Tao, J.; Pan, Z. W.; Puretzky, A. A.; Ivanov, I. N.; Pennycook, S. J.; Geohegan, D. B. Single-crystal organic nanowires of copper-tetracyanoquinodimethane: Synthesis, patterning, characterization, and device applications. Angew. Chem. Int. Ed. 2007, 46, 2650–2654.

19

Kamitsos, E. I.; Tzinis, C. H.; Risen, W. M. Raman study of the mechanism of electrical switching in CuTCNQ films. Solid State Commun. 1982, 42, 561–565.

20

Kamitsos, E. I.; Risen, W. M. Optically induced transformations of metal TCNQ materials. Solid State Commun. 1983, 45, 165–169.

21

Kamitsos, E. I.; Risen, W. M. Raman studies in CuTCNQ: Resonance Raman spectral observations and calculations for TCNQ ion radicals. J. Chem. Phys. 1983, 79, 5808–5819.

22

Thurzo, I.; Zahn, D. R. T. Revealing ionic motion molecular solids. J. Appl. Phys. 2006, 99, 023701.

23

Zhou, Z. X.; Xiao, K.; Jin, R.; Mandrus, D.; Tao, J.; Geohegan, D. B.; Pennycook, S. One-dimensional electron transport in Cu-tetracyanoquinodimethane organic nanowires. Appl. Phys. Lett. 2007, 90, 193115.

24

Flannigan, D. J.; Lobastov, V. A.; Zewail, A. H. Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 2007, 46, 9206–9210.

25

O'Mullane, A. P.; Fay, N.; Nafady, A.; Bond, A. M. Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization. J. Am. Chem. Soc. 2007, 129, 2066–2073.

26

Neufeld, A. K.; O'Mullane, A. P.; Bond, A. M. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase Ⅰ crystals by scanning electrochemical microscopy. J. Am. Chem. Soc. 2005, 127, 13846–13853.

27

Harris, A. R.; Neufeld, A. K.; O'Mullane, A. P.; Bond, A. M.; Morrison, R. J. S. Voltammetric, EQCM, spectroscopic, and microscopic studies on the electrocrystallization of semiconducting, phase Ⅰ, CuTCNQ on carbon, gold, and platinum electrodes by a nucleation-growth process. J. Electrochem. Soc. 2005, 152, C577–C583.

28

O'Mullane, A. P.; Neufeld, A. K.; Bond, A. M. Distinction of the two phases of CuTCNQ by scanning electrochemical microscopy. Anal. Chem. 2005, 77, 5447–5452.

29

Neufeld, A. K.; Madsen, I.; Bond, A. M.; Hogan, C. F. Phase, morphology, and particle size changes associated with the solid-solid electrochemical interconversion of TCNQ and semiconducting CuTCNQ (TCNQ=tetracyanoquinodimethane). Chem. Mater. 2003, 15, 3573–3585.

30

Matsumoto, M.; Nishio, Y.; Tachibana, H.; Nakamura, T.; Kawabata, Y.; Samura, H.; Nagamura, T. Switching and memory phenomena of Cu-TCNQ thin films triggered by a stimulus with an STM tip. Chem. Lett. 1991, 6, 1021–1024.

31

Hu, Z. P.; Shen, Z. X.; Qin, L.; Tang, S. H.; Kuok, M. H.; Xu, G. Q.; Mok, K. F.; Huang, H. H. High pressure Raman studies of 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ) and CuTCNQ. J. Mol. Struct. 1995, 356, 163–168.

32

Gu, N.; Yang, X. M.; Sheng, H. Y.; Lu, W.; Wei, Y. Electrical switch properties of CuTCNQ organic crystals with nanometer feature size. Synth. Met. 1995, 71, 2221–2222.

33

Gu, N.; Zhang, H. Q.; Wei, Y.; Shen, H. Y.; Zhang, L. Rectifying phenomenon of Cu-TCNQ organometallic crystallite device. Supramol. Sci. 1998, 5, 691–693.

34

Oyamada, T.; Tanaka, H.; Matsushige, K.; Sasabe, H.; Adachi, C. Switching effect in Cu: TCNQ charge transfer-complex thin films by vacuum codeposition. Appl. Phys. Lett. 2003, 83, 1252–1254.

35

Hoagland, J. J.; Wang, X. D.; Hipps, K. W. Characterization of Cu-CuTCNQ-M devices using scanning electron microscopy and scanning tunneling microscopy. Chem. Mater. 1993, 5, 54–60.

36

Duan, H.; Mays, M. D.; Cowan, D. O.; Kruger, J. The importance of interfaces and phases in switching and memory systems containing semiconducting charge-transfer complexes. Synth. Met. 1989, 28, c675–c680.

37

Sato, C.; Wakamatsu, S.; Tadokoro, K.; Ishii, K. Polarized memory effect in the device including the organic charge-transfer complex, copper-tetracyanoquinodimethane. J. Appl. Phys. 1990, 68, 6535–6537.

38

Kever, T.; Böttger, U.; Schindler, C.; Waser, R. On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl. Phys. Lett. 2007, 91, 083506.

39

Billen, J.; Steudel, S.; Müller, R.; Genoe, J.; Heremans, P. A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl. Phys. Lett. 2007, 91, 263507.

40

Heintz, R. A.; Zhao, H. H.; Xiang, O. Y.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.

41

Liu, Y. L.; Ji, Z. Y.; Tang, Q. X.; Jiang, L.; Li, H. X.; He, M.; Hu, W. P.; Zhang, D. Q.; Jiang, L.; Wang, X. K.; Wang, C.; Liu, Y. Q.; Zhu, D. B. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater. 2005, 17, 2953–2957.

42

Liu, Y. L.; Li, H. X.; Tu, D. Y.; Ji, Z. Y.; Wang, C. S.; Tang, Q. X.; Liu, M.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J. Am. Chem. Soc. 2006, 128, 12917–12922.

43

Liu, Y. L.; Li, H. X.; Ji, Z. Y.; Kashimura, Y.; Tang, Q.; Furukawa, K.; Torimitsu, K.; Hu, W.; Zhu, D. A new morphology of copper 7, 7, 8, 8-tetracyano-R-quinodimethane. Micron 2007, 38, 536–542.

44

Liu, Y. L.; Ji, Z. Y.; Li, H. X.; Hu, W. P.; Zhu, D. B. In situ synthesizing molecular materials between coplanar gold micro-gap electrodes for the fabrication of molecular devices. Appl. Phys. Lett. 2008, 92, 023505.

45

Liu, S. G.; Liu, Y. Q.; Wu, P. J.; Zhu, D. B. Multifaceted study of CuTCNQ thin-film materials. Fabrication, morphology, and spectral and electrical switching properties. Chem. Mater. 1996, 8, 2779–2787.

46

Liu, S. G.; Liu, Y. Q.; Zhu, D. B. Amorphous semiconducting film containing nanometer particles of CuTCNQ: Preparation, characterization and electrical switching property. Thin Solid Films 1996, 280, 271–277.

47

Sun, S. Q.; Wu, P. J.; Zhu, D. B. Electronic switching properties in nanometer-sized Cu(TCNQ)2 powder compactions. Solid State Commun. 1996, 99, 237–240.

48

Liu, S. G.; Liu, Y. Q.; Wu, P. J.; Zhu, D. B.; Tian, H.; Chen, K. C. Characterization and electrical property of molten-grown CuTCNQ film material. Thin Solid Films 1996, 289, 300–305.

49

Sun, S. Q.; Wu, P. J.; Zhu, D. B. The preparation, characterization of amorphous Cu-TCNQ film with a low degree of charge-transfer (DCT) and its electric switching properties. Thin Solid Films 1997, 301, 192–196.

50

Sun, S. Q.; Xu, X.; Wu, P. J.; Zhu, D. B. Characterization and electrical switching properties of Cu-tetracyanoquinodimethane films formed under different conditions. J. Mater. Sci. Lett. 1998, 17, 719–721.

51

Liu, H. B.; Zhao, Q.; Li, Y. C.; Liu, Y.; Lu, F. S.; Zhuang, J. P.; Wang, S.; Jiang, L.; Zhu, D. B.; Yu, D. P.; Chi, L. F. Field emission properties of large-area nanowires of organic charge-transfer complexes. J. Am. Chem. Soc. 2005, 127, 1120–1121.

52

Gong, J. P.; Osada, Y. Preparation of polymeric metal-tetracyanoquinodimethane film and its bistable switching. Appl. Phys. Lett. 1992, 61, 2787–2789.

53

Melby, L. R.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Benson, R. E.; Mochel, W. E. Substituted quinodimethans. Ⅱ. Anion-radical derivatives and complexes of 7, 7, 8, 8-tetracyanoquinodimethan. J. Am. Chem. Soc. 1962, 84, 3374–3387.

54

Cao, G. Y.; Ye, C. N.; Fang, F.; Xing, X. Y.; Xu, H. H.; Sun, D. L.; Chen, G. R. Scanning electron microscopy investigation of Cu-TCNQ micro/nanostructures synthesized via vapor-induced reaction method. Micron 2005, 36, 267–270.

55

Kever, T.; Nauenheim, C.; Böttger, U.; Waser, R. Preparation and characterisation of amorphous Cu: 7, 7, 8, 8-tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition. Thin Solid Films 2006, 515, 1893–1896.

56

Ikemoto, I.; Thomas, J. M.; Kuroda, H. X-ray photoelectron spectra of copper-tetracyanoquinodimethane complexes. Bull. Chem. Soc. Jpn. 1973, 46, 2237–2238.

57

Lindquist, J. M.; Hemminger, J. C. High-energy resolution X-ray photoelectron spectroscopy studies of tetracyanoquinodimethane charge-transfer complexes with copper, nickel, and lithium. Chem. Mater. 1989, 1, 72–78.

58

Gerlach, A.; Maas, D.; Seidel, D. Influence of gold thin-film interlayers on anodic bonding of copper microstructures produced by LIGA. Microsyst. Technol. 1998, 5, 100–104.

59

Poate, J. M. Diffusion and reactions in gold films. Gold Bull. 1981, 14, 1–11.

Nano Research
Pages 630-637
Cite this article:
Liu Y, Ji Z, Li H, et al. Tuning Reaction Processes for the Synthesis of Micron and Nanometer Sized, Single Crystalline Lamellae of Copper 7, 7, 8, 8-tetracyano-p-quinodimethane (Phase Ⅱ) with Large Area. Nano Research, 2009, 2(8): 630-637. https://doi.org/10.1007/s12274-009-9065-0

732

Views

17

Downloads

14

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 30 March 2009
Revised: 25 May 2009
Accepted: 27 May 2009
Published: 01 August 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return