Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb films using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques. We observed novel magnetoresistance oscillations below the superconducting transition temperature (TC) of the bridges. The oscillations—which were not seen in the crystalline Pb films—may originate from the inhomogeneity of superconductivity induced by the applied magnetic fields on approaching the normal state, or the degradation of film quality by thermal evolution.
Sharifi, F.; Herzog, A. V.; Dynes, R. C. Crossover from two to one dimension in in situ grown wires of Pb. Phys. Rev. Lett. 1993, 71, 428–431.
Herzog, A. V.; Xiong, P.; Sharifi, F.; Dynes, R. C. Observation of a discontinuous transition from strong to weak localization in 1-D granular metal wires. Phys. Rev. Lett. 1996, 76, 668–671.
Xiong, P.; Herzog, A. V.; Dynes, R. C. Negative magnetoresistance in homogeneous amorphous superconducting Pb wires. Phys. Rev. Lett. 1997, 78, 927–930.
Bezryadin, A.; Lau, C. N.; Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 2000, 404, 971–974.
Camarota, B.; Parage, F.; Delsing, P.; Buisson, O. Experimental evidence of one-dimensional plasma modes in superconducting thin wires. Phys. Rev. Lett. 2001, 86, 480–483.
Vodolazov, D. Y.; Peeters, F. M.; Piraux, L.; Mátéfi-Tempfli, S.; Michotte, S. Current–voltage characteristics of quasi-one-dimensional superconductors: An S-shaped curve in the constant voltage regime. Phys. Rev. Lett. 2003, 91, 157001.
Tian, M. L.; Kumar, N.; Xu, S. Y.; Wang, J. G.; Kurtz, J. S.; Chan, M. H. W. Suppression of superconductivity in zinc nanowires by bulk superconductors. Phys. Rev. Lett. 2005, 95, 076802.
Rogachev, A.; Bollinger, A. T.; Bezryadin, A. Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 2005, 94, 017004.
Zgirski, M; Riikonen, K. -P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 2005, 5, 1029–1033.
Altomare, F; Chang, A. M.; Melloch, M. R.; Hong, Y. G.; Tu, C. W. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 2006, 97, 017001.
Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q.; Jia, J. F.; Zhao, Z. X.; Xue, Q. K. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.
Chiang, T. C. Superconductivity in thin films. Science 2004, 306, 1900–1901.
Zhang, Y. F.; Jia, J. F.; Han, T. Z.; Tang, Z.; Shen, Q. T.; Guo, Y.; Qiu, Z. Q.; Xue, Q. K. Band structure and oscillatory electron-phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 2005, 95, 096802.
Bao, X. Y.; Zhang, Y. F.; Wang, Y. P.; Jia, J. F.; Xue, Q. K.; Xie, X. C.; Zhao, Z. X. Quantum size effects on the perpendicular upper critical field in ultrathin lead films. Phys. Rev. Lett. 2005, 95, 247005.
Eom, D.; Qin, S.; Chou, M. -Y.; Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 2006, 96, 027005.
Ozer, M. M.; Thompson, J. R.; Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2006, 2, 173–176.
Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Jia, J. F.; Xue, Q. K. Negative magnetoresistance in fractal Pb thin films on Si(111). Appl. Phys. Lett. 2007, 90, 113109.
Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Unusual magnetoresistance effect in the heterojunction structure of an ultrathin single-crystal Pb film on silicon substrate. Nanotechnology 2008, 19, 475708.
Rogachev, A.; Bezryadin, A. Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl. Phys. Lett. 2003, 83, 512–514.
Tian, M. L.; Wang, J. G.; Kurtz, J. S.; Liu, Y.; Chan, M. H. W. Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 2005, 71, 104521.
Shanenko, A. A.; Croitoru, M. D.; Zgirski, M.; Peeters, F. M.; Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect. Phys. Rev. B 2006, 74, 052502.
Wang, J.; Ma, X. C.; Lu, L.; Jin, A. Z.; Gu, C. Z.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts. Appl. Phys. Lett. 2008, 92, 233119.
Herzog, A. V.; Xiong, P.; Dynes, R. C. Magnetoresistance oscillations in granular Sn wires near the superconductor–insulator transition. Phys. Rev. B 1998, 58, 14199–14202.
Johansson, A.; Sambandamurthy, G.; Shahar, D.; Jacobson, N.; Tenne, R. Nanowires acting as a superconducting quantum interference device. Phys. Rev. Lett. 2005, 95, 116805.
Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K. Synthesis and superconducting properties of niobium nanowires and nanoribbons. Appl. Phys. Lett. 2007, 91, 162508.
Van der Zant, H. S. J., Webster, M. N., Romijn, J.; Mooij, J. E. Vortices in two-dimensional superconducting weakly coupled wire networks. Phys. Rev. B 1994, 50, 340–350.
Hopkins, D. S.; Pekker, D.; Goldbart, P. M., Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 2005, 308, 1762–1765.
Pekker, D.; Bezryadin, A.; Hopkins, D. S.; Goldbart, P. M. Operation of a superconducting nanowire quantum interference device with mesoscopic leads. Phys. Rev. B 2005, 72, 104517.
746
Views
25
Downloads
14
Crossref
N/A
Web of Science
14
Scopus
0
CSCD
Altmetrics
This article is published with open access at Springerlink.com