AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Water-Controlled Synthesis of Low-Dimensional Molecular Crystals and the Fabrication of a New Water and Moisture Indicator

Zhuoyu Ji1,2Huanli Dong1Ming Liu2( )Wenping Hu1( )
Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing 100190 China
Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology Institute of Microelectronics Chinese Academy of SciencesBeijing 100029 China
Show Author Information

Graphical Abstract

Abstract

Arrays of low-dimensional molecular crystals of square columns (1-D) and nanolamellae (2-D) of Zn[TCNQ]2(H2O)2 with large areas (up to 10–20 cm2) have been synthesized by controlled addition of water to Zn and TCNQ. Based on the ability to accurately control the reaction, a new moisture and water indicator has been developed. The simple method, the large areas of material prepared, the fine size tuning, and the typical semiconductor behavior of the resulting low-dimensional molecular materials promise applications in molecular electronics as well as nanoelectronics. The system is an effective indicator for the detection of traces of water and moisture.

Electronic Supplementary Material

Download File(s)
nr-2-11-857_ESM.pdf (1.2 MB)

References

1

Acker, D. S.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Melby, L. R.; Benson, R. E.; Mochel, W. E. 7, 7, 8, 8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives. J. Am. Chem. Soc. 1960, 82, 6408–6409.

2

Wheland, R. C.; Gillson, J. L. Synthesis of electrically conductive organic solids. J. Am. Chem. Soc. 1976, 98, 3916–3925.

3

Kathirgamanathan, P.; Rosseinsky, D. R. Electrocrystallized metal-tetracyanoquinodimethane salts with high electrical-conductivity. J. Chem. Soc., Chem. Commun. 1980, 17, 839–840.

4

Bolinger, C. M.; Darkwa, J.; Gammie, G.; Gammon, S. D.; Lyding, J. W.; Rauchfuss, T. B.; Wilson, S. R. Synthesis, structure, and electrical properties of [(MeCp)5V5S6][(TCNQ)2]. Organomet. 1986, 5, 2386–2388.

5

Kulys, J.; Drungiliene, A. Electrocatalytic oxidation of ascorbic acid at chemically modified electrodes. Electroanal. 1991, 3, 209–214.

6

Murthy, A. S. N.; Anita, G. R. L. NADH sensor with electrochemically modified TCNQ electrode. Anal. Chim. Acta 1994, 289, 43–46.

7

Wooster, T. J.; Bond, A. M.; Honeychurch, M. J. An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Anal. Chem. 2003, 75, 586–592.

8

Wooster, T. J.; Bond, A. M. Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations. Analyst 2003, 128, 1386–1390.

9

Okamoto, T.; Kozaki, M.; Doe, M.; Uchida, M.; Wang, G.; Okada, K. 1, 4-Benzoxazino[2, 3-b]phenoxazine and its sulfur analogues: Synthesis, properties, and application to organic light-emitting diodes. Chem. Mater. 2005, 17, 5504–5511.

10

Mueller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ non-volatile memories for integration in the CMOS backend-of-line: Preparation from gas/solid reaction and downscaling to an area of 0.25 μm2. Solid State Electron. 2006, 50, 601–605.

11

Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.

12

Neufeld, A. K.; Madsen, I.; Bond, A. M.; Hogan, C. F. Phase, morphology, and particle size changes associated with the solid–solid electrochemical interconversion of TCNQ and semiconducting CuTCNQ (TCNQ = tetracyanoquinodimethane). Chem. Mater. 2003, 15, 3573–2585.

13

Neufeld, A. K.; O'Mullane, A. P.; Bond, A. M. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase Ⅰ crystals by scanning electrochemical microscopy. J. Am. Chem. Soc. 2005, 127, 13846–13853.

14

O'Mullane, A. P.; Neufeld, A. K.; Bond, A. M. Distinction of the two phases of CuTCNQ by scanning electrochemical microscopy. Anal. Chem. 2005, 77, 5447–5452.

15

O'Mullane, A. P.; Neufeld, A. K.; Harris, A. R.; Bond, A. M. Electrocrystallization of phase Ⅰ, CuTCNQ (TCNQ = 7, 7, 8, 8-tetracyanoquinodimethane), on indium tin oxide and boron-doped diamond electrodes. Langmuir 2006, 22, 10499–10505.

16

Siedle, A. R.; Candela, G. A.; Finnegan, T. F. Transition-metal derivatives of the teracyanoquinodimethane ion, TCNQ2−. Inorg. Chim. Acta 1979, 35, 125–130.

17

Nafady, A.; O'Mullane, A. P.; Bond, A. M.; Neufeld, A. K. Morphology changes and mechanistic aspects of the electrochemically-induced reversible solid–solid transformation of microcrystalline TCNQ into Co[TCNQ]2-based materials (TCNQ = 7, 7, 8, 8-tetracyanoquino dimethane). Chem. Mater. 2006, 18, 4375–4384.

18

Clerac, R.; O'Kane, S.; Cowen, J.; Ouyang, X.; Heintz, R.; Zhao, H.; Bazile, M. J.; Dunbar, Jr. K. R. Glassy magnets composed of metals coordinated to 7, 7, 8, 8-tetracyanoquinodimethane: M(TCNQ)2 (M = Mn, Fe, Co, Ni). Chem. Mater. 2003, 15, 1840–1850.

19

Nafady, A.; Bond, A. M.; Bilyk, M. A.; Harris, A. R.; Bhatt, A. I.; O'Mullane, A. P.; Marco, R. D. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films. J. Am. Chem. Soc. 2007, 129, 2369–2382.

20

Goh, S. H.; Lee, S. Y.; Zhou, X.; Tan, K. L. X-ray photoelectron spectroscopic studies of interactions between poly(4-vinylpyridine) and poly(styrenesulfonate) salts. Macromolecules 1998, 31, 4260–4264.

21
Potember, R. S.; Poehler, T. O.; Cowan, D. O.; Carter, F. L.; Brant, P. I. In Molecular Electronic Devices; Carter, F. L., Eds.; Marcel Dekker: New York, 1982.
22

Ikemoto, I.; Thomas, J. M.; Kuroda, H. X-ray photoelectron spectra of copper-tetracyanoquinodimethane complexes. Bull. Chem. Soc. Jpn. 1973, 46, 2237–2238.

23

Khatkale, K. S.; Devlin, J. P. The vibrational and electronic spectra of the mono-, di-, and trianon salts of TCNQ. J. Chem. Phys. 1979, 70, 1851–1859.

24

Zhao, H.; Heintz, R. A.; Ouyang, X.; Dunbar, K. R.; Campana, C. F.; Rogers, R. D. Spectroscopic, thermal, and magnetic properties of metal/TCNQ network polymers with extensive supramolecular interactions between layers. Chem. Mater. 1999, 11, 736–746.

25

Melby, L. R.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Benson R. E. Substituted quinodimethans, Ⅱ. Anion-radical derivatives and complexes of 7, 7, 8, 8-tetracyano quinodimethan. J. Am. Chem. Soc. 1962, 84, 3374–3387.

26

Jeanmaire, D. L.; van Duyne, R. P. Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical. J. Am. Chem. Soc. 1976, 98, 4029–4033.

27

Gong, J. P.; Osada, Y. Preparation of polymeric metal-tetracyanoquinodimethane film and its bistable switching. Appl. Phys. Lett. 1992, 61, 2787–2789.

28

Liu, S.; Liu, Y.; Wu, P.; Zhu, D. Multifaceted study of CuTCNQ thin-film materials. Fabrication, morphology, and spectral and electrical switching properties. Chem. Mater. 1996, 8, 2779–2787.

29

Liu, Y.; Ji, Z.; Tang, Q.; Jiang, L.; Li, H.; He, M.; Hu, W.; Zhang, D.; Jiang, L.; Wang, X.; Wang, C.; Liu, Y.; Zhu, D. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater. 2005, 17, 2953–2958.

30

Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 2006, 18, 65–68.

31

Lampert, M. A.; Mark, P. Current Injection in Solids; Academic Press: New York and London, 1970.

Nano Research
Pages 857-864
Cite this article:
Ji Z, Dong H, Liu M, et al. Water-Controlled Synthesis of Low-Dimensional Molecular Crystals and the Fabrication of a New Water and Moisture Indicator. Nano Research, 2009, 2(11): 857-864. https://doi.org/10.1007/s12274-009-9084-x

673

Views

14

Downloads

17

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 08 July 2009
Revised: 13 August 2009
Accepted: 25 August 2009
Published: 11 November 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return