AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (939.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Walled Carbon Nanotube Bowls?

Jiaqi HuangQiang ZhangMengqiang ZhaoFei Wei ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical EngineeringTsinghua UniversityBeijing 100084 China
Show Author Information

Graphical Abstract

Abstract

Introduction of CO2 is a facile way to tune the growth of vertically aligned double- or single-walled carbon nanotube (CNT) forests on wafers. In the absence of CO2, a double-walled CNT convexity was obtained. With increasing concentration of CO2, the morphologies of the forests transformed first into radial blocks, and finally into bowl-shaped forests. Furthermore, the wall number and diameter distribution of the CNTs were also modulated by varying the amount of CO2. With increasing CO2 concentration, CNTs with fewer wall number and smaller diameter were obtained. The addition of CO2 is speculated to generate water and serve as a weak oxidant for high quality CNT growth. It can tune the growth rate and the morphologies of the forests, prevent the formation of amorphous carbon, and reduce the wall number of the CNTs.

Electronic Supplementary Material

Download File(s)
nr-2-11-872_ESM.pdf (454.3 KB)

References

1

Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.

2

Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

3

Dai, L. M.; Patil, A.; Gong, X. Y.; Guo, Z. X.; Liu, L. Q.; Liu, Y.; Zhu, D. B. Aligned nanotubes. ChemPhysChem 2003, 4, 1150–1169.

4

Qu, L. T.; Dai, L. M.; Stone, M.; Xia, Z. H.; Wang, Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008, 322, 238–242.

5

Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

6

Zhang, Q.; Xu, G. H.; Huang, J. Q.; Zhou, W. P.; Zhao, M. Q.; Wang, Y.; Qian, W. Z.; Wei, F. Fluffy carbon nanotubes produced by shearing vertically aligned carbon nanotube arrays. Carbon 2009, 47, 538–541.

7

Dai, H. J.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. R. Electrical transport properties and field effect transistors of carbon nanotubes. Nano 2006, 1, 1–13.

8

Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

9

Zhong, G. F.; Iwasaki, T.; Robertson, J.; Kawarada, H. Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1907–1910.

10

Chakrabarti, S.; Kume, H.; Pan, L. J.; Nagasaka, T.; Nakayama, Y. Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. J. Phys. Chem. C 2007, 111, 1929–1934.

11

Patole, S. P.; Alegaonkar, P. S.; Shin, H. C.; Yoo, J. B. Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J. Phys. D: Appl. Phys. 2008, 41, 155311.

12

Xiong, G. Y.; Wang, D. Z.; Ren, Z. F. Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 2006, 44, 969–973.

13

Zhao, B.; Futaba, D. N.; Yasuda, S.; Akoshima, M.; Yamada, T.; Hata, K. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 2009, 3, 108–114.

14

Zhong, G. F.; Iwasaki, T.; Kawarada, H. Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon 2006, 44, 2009–2014.

15

Lee, D. H.; Lee, W. J.; Kim, S. O. Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays. Nano Lett. 2009, 9, 1427–1432.

16

Iwasaki, T.; Maki, T.; Yokoyama, D.; Kumagai, H.; Hashimoto, Y.; Asari, T.; Kawarada, H. Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2008, 2, 53–55.

17

Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Xu, G. H.; Wang, D. Z. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis. Powder Technol. 2008, 183, 10–20.

18

Wu, Z. P.; Wang, J. N.; Ma, J. Methanol-mediated growth of carbon nanotubes. Carbon 2009, 47, 324–327.

19

Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. P. Natl. Acad. Sci. USA 2005, 102, 16141–16145.

20

Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.

21

Sugime, H.; Noda, S.; Maruyama, S.; Yamaguchi, Y. Multiple "optimum" conditions for Co–Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon 2009, 47, 234–241.

22

Amama, P. B.; Pint, C. L.; McJilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R. H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 2009, 9, 44–49.

23

Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288–4292.

24

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

25

Liu, J. X.; Ren, Z.; Duan, L. Y.; Xie, Y. C. Effects of H2O on preparation of single-wall carbon nanotubes (SWCNTs) by catalytic decomposition of CH4 in Ar. Acta Chim. Sinica 2004, 62, 775–782.

26

Zhu, L. B.; Sun, Y. Y.; Hess, D. W.; Wong, C. P. Well-aligned open-ended carbon nanotube architectures: An approach for device assembly. Nano Lett. 2006, 6, 243–247.

27

Zhu, L. B.; Xiu, Y. H.; Hess, D. W.; Wong, C. P. Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett. 2005, 5, 2641–2645.

28

Wen, Q.; Qian, W. Z.; Wei, F.; Liu, Y.; Ning, G. Q.; Zhang, Q. CO2-assisted SWNT growth on porous catalysts. Chem. Mater. 2007, 19, 1226–1230.

29

Li, Z. R.; Xu, Y.; Ma, X. D.; Dervishi, E.; Saini, V.; Biris, A. R.; Lupu, D.; Biris, A. S. CO2 enhanced carbon nanotube synthesis from pyrolysis of hydrocarbons. Chem. Commun. 2008, 3260–3262.

30

Wu, J.; Ma, Y. F.; Tang, D. M.; Liu, C.; Huang, Q. W.; Huang, Y.; Cheng, H. M.; Chen, D. P.; Chen, Y. S. Enhancement of field emission of CNTs array by CO2-assisted chemical vapor deposition. J. Nanosci. Nanotechnol. 2009, 9, 3046–3051.

31

Pint, C. L.; Pheasant, S. T.; Parra-Vasquez, A. N. G.; Horton, C.; Xu, Y. Q.; Hauge, R. H. Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 4125–4133.

32

Zhang, Q.; Zhou, W. P.; Qian, W. Z.; Xiang, R.; Huang, J. Q.; Wang, D. Z.; Wei, F. Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 2007, 111, 14638–14643.

33

Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 2008, 46, 1152–1158.

34

Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.

35

Hart, A. J.; van Laake, L.; Slocum, A. H. Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 2007, 3, 772–777.

36

Nessim, G. D.; Hart, A. J.; Kim, J. S.; Acquaviva, D.; Oh, J. H.; Morgan, C. D.; Seita, M.; Leib, J. S.; Thompson, C. V. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett. 2008, 8, 3587–3593.

37

Meshot, E. R.; Hart, A. J. Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 2008, 92, 113107.

38

Li, X. S.; Ci, L.; Kar, S.; Soldano, C.; Kilpatrick, S. J.; Ajayan, P. M. Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon 2007, 45, 847–851.

39

Feng, X. F.; Liu, K.; Xie, X.; Zhou, R. F.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. J. Phys. Chem. C 2009, 113, 9623–9631.

40

Yasuda, S.; Hiraoka, T.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity. Nano Lett. 2009, 9, 769–773.

41

Xiang, R.; Yang, Z.; Zhang, Q.; Luo, G. H.; Qian, W. Z.; Wei, F.; Kadowaki, M.; Einarsson, E.; Maruyama, S. Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled? J. Phys. Chem. C 2008, 112, 4892–4896.

42

Pint, C. L.; Xu, Y. Q.; Pasquali, M.; Hauge, R. H. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2008, 2, 1871–1878.

43

Pint, C. L.; Pheasant, S. T.; Pasquali, M.; Coulter, K. E.; Schmidt, H. K.; Hauge, R. H. Synthesis of high aspect-ratio carbon nanotube "flying carpets" from nanostructured flake substrates. Nano Lett. 2008, 8, 1879–1883.

44

Zhang, Q.; Zhao, M. Q.; Liu, Y.; Cao, A. Y.; Qian, W. Z.; Lu, Y. F.; Wei, F. Energy-absorbing hybrid composites based on alternate carbon nanotube and inorganic layers. Adv. Mater. 2009, 21, 2876–2880.

45

Pint, C. L.; Alvarez, N. T.; Hauge, R. H. Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces. Nano Res. 2009, 2, 526–534.

Nano Research
Pages 872-881
Cite this article:
Huang J, Zhang Q, Zhao M, et al. Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Walled Carbon Nanotube Bowls?. Nano Research, 2009, 2(11): 872-881. https://doi.org/10.1007/s12274-009-9088-6

689

Views

39

Downloads

43

Crossref

N/A

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 13 July 2009
Revised: 02 September 2009
Accepted: 13 September 2009
Published: 11 November 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return