AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (812.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Selective Cytotoxic Effect of ZnO Nanoparticles on Glioma Cells

Stella Ostrovsky1Gila Kazimirsky2Aharon Gedanken1( )Chaya Brodie2
Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and Nanotechnology Bar-Ilan UniversityRamat-Gan 52900 Israel
The Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan UniversityRamat-Gan 52900 Israel
Show Author Information

Graphical Abstract

Abstract

In this study we examined the cytotoxic effect of ZnO nanoparticles on various human cancer and normal cells. We found that the ZnO nanoparticles exerted a cytotoxic effect on the human glioma cell lines A172, U87, LNZ308, LN18, and LN229, whereas no cytotoxic effect was observed on normal human astrocytes. Similarly, the ZnO nanoparticles induced cell death in breast and prostate cancer cell lines while no major effect was observed in the respective normal breast and prostate cell lines. Using the fluorescent dye 2, 7-dichlorofluorescein diacetate, we found that treatment of the glioma cells with ZnO nanoparticles induced a large increase in the generation of reactive oxygen species (ROS) and treatment of the cells with N-acetyl cysteine decreased the cytotoxic effect of the ZnO nanoparticles. In contrast, a smaller effect on ROS generation was observed in the normal astrocytes. These results suggest that ZnO nanoparticles may be employed as a selective cytotoxic agent for the eradication of cancer cells.

References

1

Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896.

2

Szabo, T.; Nemeth, J.; Dekany, I. Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Coll. Surf. A 2003, 230, 23–35.

3

Yamamoto, O.; Hotta, M.; Sawai, J.; Sasamoto, T.; Kojima, H. Influence of powder characteristic of ZnO on antibacterial activity — Effect of specific surface area. J. Ceram. Soc. Jpn. 1998, 106, 1007–1011.

4

Sanson, M.; Thillet, J.; Hoang-Xuan, K. Molecular changes in gliomas. Curr. Opin. Oncol. 2004, 16, 607–613.

5

Ahmed Rasheed, B. K.; Wiltshire, R. N.; Bigner, S. H.; Bigner, D. D. Molecular pathogenesis of malignant gliomas. Curr. Opin. Oncol. 1999, 11, 162–167.

6

Prados, M. D.; Levin, V. Biology and treatment of malignant glioma. Semin. Oncol. 2000, 27, 1–10.

7

Suslick, K. S.; Hammerton, D. A.; Cline, R. E. The sonochemical hot spot. J. Am. Chem. Soc. 1986, 108, 5641–5642.

8

Suslick, K. S. The chemical effects of ultrasound. Sci. Am. 1989, 260, 80–86.

9

Wang, H.; Joseph, J. A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616.

10

Winterbourn, C. C.; Sutton, H. C. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: Catalytic requirements and oxygen dependence. Arch Biochem. Biophys. 1984, 235, 116–126.

11

Boudreau, R. T. M.; Conrad, D. M.; Hoskin, D. W. Differential involvement of reactive oxygen species in apoptosis caused by the inhibition of protein phosphatase 2A in Jurkat and CCRF–CEM human T-leukemia cells. Exp. Mol. Pathol. 2007, 83, 347–356.

12

Decaudin, D.; Marzo, I.; Brenner, C.; Kroemer, G. Mitochondria in chemotherapy-induced apoptosis: A prospective novel target of cancer therapy. Int. J. Oncol. 1998, 12, 141–152.

13

Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R. Nel. A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807.

14

Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Evaluation of growth inhibitory effect of ceramic powder slurry on bacteria by conductance method. J. Chem. Eng. Jpn. 1995, 28, 288–293.

15

Bhattacharyya, S.; Gedanken, A. A template-free, sonochemical route to porous ZnO nano-disks. Micropor. Mesopor. Mater. 2008, 110, 553–559.

16

Soule, H. D.; Maloney, T. M.; Wolman, S. R.; Peterson, Jr., W. D.; Brenz, Jr., R.; McGrath, C. M.; Russo, J.; Pauley, R. J.; Jones, R. F.; Brooks, S. C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50, 6075–6086.

17

Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008, 68, 1777–1785.

18

Blass, M.; Kronfeld, I.; Kazimirsky, G.; Blumberg, P. M.; Brodie, C. Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etopo side. Mol. Cell Biol. 2002, 22, 182–195.

19

Okhrimenko, H.; Lu, W.; Xiang, C. L.; Ju, D. H.; Blumberg, P. M.; Gomel, R.; Kazimirsky, G.; Brodie, C. Roles of tyrosine phosphorylation and cleavage of protein kinase Cδ in its protective effect against tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis. J. Biol. Chem. 2005, 280, 23643–23652.

20

Wacker, W. E. C.; Ulmer, D. D.; Vallee, B. L. Metalloenzymes and myocardial infarction. New Engl. J. Med. 1956, 255, 450–456.

21

Lin, W. S.; Huang, Y. W.; Zhou, X. D.; Ma, Y. F. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259.

Nano Research
Pages 882-890
Cite this article:
Ostrovsky S, Kazimirsky G, Gedanken A, et al. Selective Cytotoxic Effect of ZnO Nanoparticles on Glioma Cells. Nano Research, 2009, 2(11): 882-890. https://doi.org/10.1007/s12274-009-9089-5

814

Views

20

Downloads

228

Crossref

N/A

Web of Science

253

Scopus

0

CSCD

Altmetrics

Received: 07 May 2009
Revised: 06 August 2009
Accepted: 18 September 2009
Published: 11 November 2009
© Tsinghua University Press and Springer-Verlag 2009

This article is published with open access at Springerlink.com

Return