Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as-grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of metallic-single-walled nanotube (SWNT) shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to 10 μm.
Schottky, W. Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter. Z. Phys. 1942, 118, 539–592.
Shockley, W. The theory of p–n junctions in semiconductors in p–n junction transistors. Bell Syst. Tech. J. 1949, 28, 435–489.
Huang, Y. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.
Low, T.; Hong, S.; Appenzeller, J.; Datta, S.; Lundstrom, M. Conductance asymmetry of graphene p–n junction. IEEE Trans. Electron. Dev. 2009, 56, 1292–1299.
Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p–n junction. ACS Nano 2008, 2, 2154–2159.
Lee, J. U.; Gipp, P. P.; Heller, C. M. Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 2004, 85, 145–147.
Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.
Bosnick, K.; Gabor, N.; McEuen, P. Transport in carbon nanotube p–i–n diodes. Appl. Phys. Lett. 2006, 89, 163121.
Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology 2006, 17, 3412–3415.
Cobas, E.; Fuhrer, M. S. Microwave rectification by a carbon nanotube Schottky diode. Appl. Phys. Lett. 2008, 93, 043120.
Manohara, H. M.; Wong, E. R.; Schlecht, E.; Hunt, B. D.; Siegel, P. H. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. Nano Lett. 2005, 5, 1469–1474.
Wang, S.; Zhang, L.; Zhang, Z. Y.; Ding, L.; Zeng, Q. S.; Wang, Z. X.; Liang, X. L.; Gao, M.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. Photovoltaic effects in asymetrically contacted CNT barrier free bipolar diode. J. Phys. Chem. C 2009, 113, 6891–6893.
Wang, S.; Zhang, Z. Y.; Ding, L.; Liang, X. L.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. A doping free carbon nanotube CMOS inverter-based bipolar diode and ambipolar transistor. Adv. Mater. 2008, 20, 3258–3262.
Perello, D.; Bae, D. J.; Kim, M. J.; Cha, D.; Jeong, S. Y.; Kang, B. R.; Yu, W. J.; Lee, Y. H.; Yun, M. Quantitative experimental analysis of Schottky barriers and Poole–Frenkel emission in carbon nanotube devices. IEEE Trans. Nanotechnol. 2009, 8, 355–360.
Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A. High frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.
Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA 2008, 105, 1405–1409.
Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Adam, J. D.; Kocabas, C.; Banks, T.; Rogers, J. A. A 500 MHz carbon nanotube transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.
Amlani, L.; Lewis, J.; Lee, K.; Zhang, R.; Deng, J.; Wong, H. S. P. First demonstration of AC gain from a single walled carbon nanotube common-source amplifier, IEEE International Electron Devices Meeting, San Francisco, USA, 2006, 1-2, 559–562.
Sze, S. M. Semiconductor Devices, Physics and Technology (2nd Edition); John Wiley and Sons, Inc. : USA, 2002.
Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of higher coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.
Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High performance electronics using dense, perfectly aligned arrays of single walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.
Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated Ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.
Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101.
Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.
Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.
Wolfram, S. Mathematica 7.0; Wolfram Research: Champaign, IL, USA, 2008.
Banwell, T. C.; Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 2000, 36, 291–292.
Ho, X. N.; Ye, L.; Rotkin, S. V.; Cao, Q.; Unarunotai, S.; Salamat, S.; Alam, M. A.; Rogers, J. A. Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2010, 10, 499–503.
Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current–voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.
Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082–6085.
Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 2004, 92, 046401.
Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.
792
Views
40
Downloads
16
Crossref
N/A
Web of Science
18
Scopus
0
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.