AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (916.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Configuration-Sensitive Molecular Sensing on Doped Graphene Sheets

John RussellPetr Král( )
Department of Chemistry University of Illinois at ChicagoChicago IL 60607 USA
Show Author Information

Graphical Abstract

Abstract

We show by molecular dynamics simulations that configuration-sensitive molecular spectroscopy can be realized on optimally doped graphene sheets vibrated by an oscillatory electric field. High selectivity of the spectroscopy is achieved by maximizing Coulombic binding between the detected molecule and a specific nest, formed for this molecule on the graphene sheet by substituting selected carbon atoms with boron and nitrogen dopants. One can detect binding of different isomers to the nest from the frequency shifts of selected vibrational modes of the combined system. As an illustrative example, we simulate detection of hexanitrostilbene enantiomers in chiral nests formed on graphene.

Electronic Supplementary Material

Download File(s)
nr-3-7-472_ESM.mpg (2.6 MB)

References

1

Kunz, R. R.; Gregory, K. C.; Hardy, D.; Oyler, J.; Ostazeski, S. A; Fountain, A, W. III. Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations. Anal. Bioanal. Chem. 2009, 395, 357-369.

2

Ni, M.; Stetter, J. R.; Buttner, W. J. Orthogonal gas sensor arrays with intelligent algorithms for early warning of electrical fires. Sensor. Actuat. B: Chem. 2008, 130, 889-899.

3

Li, R.; Wang, P.; Hu, W. L. A novel method for wine analysis based on sensor fusion technique. Sensor. Actuat. B: Chem. 2000, 66, 246-250.

4

Willis, C.; Church, S.; Guest, C.; Cook, W.; McCarthy, N.; Bransbury, A.; Church, M.; Church, J. Olfactory detection of human bladder cancer by dogs: Proof of principle study. Brit. Med. J. 2004, 329, 712-715.

5

Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171-174.

6

Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.

7

Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-624.

8

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.

9

Freitag, M.; Johnson, A. T.; Kalinin, S. V.; Bonnell, D. A. Role of single defects in electronic transport through carbon nanotube field-effect transistors. Phys. Rev. Lett. 2002, 89, 216801.

10

Staii, C.; Johnson, A. T. Chen, M.; Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5, 1774-1778.

11

Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. P. Natl. Acad. Sci USA 2003, 100, 4984-4989.

12

Snow, E. S.; Perkins, F. K.; Houser, E. J.; Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005, 307, 1942-1945.

13

Qi, P. F.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. J.; Peng, S.; Cho, K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 2003, 3, 347-351.

14

Williams, K. A.; Veenhuizen, P. T. M.; de la Torre, B. G.; Eritja, R.; Dekker, C. Nanotechnology: Carbon nanotubes with DNA recognition. Nature 2002, 420, 761.

15

Wang, F.; Gu, H. W.; Swager, T. M. Carbon nanotube/ polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392-5393.

16

Zhang, T.; Nix, M. B.; Yoo, B. Y.; Deshusses, M. A.; Myung, N. V. Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanal. 2006, 18, 1153-1158.

17

Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472-1475.

18

Ilic, B. R.; Krylov, S.; Kondratovich, M.; Craighead, H. G. Optically actuated nanoelectromechanical oscillators. IEEE J. Quantum Electr. 2007, 13, 392-399.

19

Garcia-Sanchez, D.; San Paulo, A.; Esplandiu, M. J.; Perez-Murano, F.; Forro, L.; Aguasca, A.; Bachtold, A. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 2007, 99, 088501.

20

Li, C. Y.; Chou, T. -W. Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 2004, 84, 5246-5248.

21

Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S.; Souza, M.; Dantas, M. S. S.; Pimenta, M. A.; Rao, A. M.; Saito, R.; Liu, C.; Cheng, H. M. Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys. Rev. Lett. 2000, 85, 2617-2620.

22

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433-1441.

23

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.

24

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490-493.

25

Wang, B. Y.; Král, P. Optimal atomistic modifications of material surfaces: Design of selective nesting sites for biomolecules. Small 2007, 3, 580-584.

26

Katano, S.; Kim, Y; Hori, M; Trenary, M; Kawai, M. Reversible control of hydrogenation of a single molecule. Science 2007, 316, 1883-1886.

27

Balog, R.; Jorgensen, B. J.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S., et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.

28

Li, J. -L.; Kudin, K. N.; McAllister, M. J.; Prudhomme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. Phys. Rev. Lett. 2006, 96, 176101.

29

Xu, Z. P.; Xue, K. Engineering graphene by oxidation: A first-principles study. Nanotechnology 2010, 21, 045704.

30

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876-10877.

31

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

32

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768-771.

33

Wang, H. L.; Wang, X. R.; Li, X. L.; Dai, H. J. Chemical self-assembly of graphene sheets. Nano Res. 2009, 2, 336-342.

34

Li, C.; Qian, X. G.; Yang, B. J.; Yan, Y.; Qian, Y. T. Synthesis and characterization of nitrogen-rich graphitic carbon nitride. Mater. Chem. Phys. 2007, 103, 427-432.

35
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford CT (2004).
36

Wang, B. Y.; Král, P. Chemically tunable nanoscale propellers of liquids. Phys. Rev. Lett. 2007, 98, 266102.

37

Xu, W.; Jin, L.; Lu, Y. X.; Lan, B. J.; Zou, Z. G. C3-symmetric molecules with axial chirality and handed arrangement of dipole fields. Chem. Res. Chinese U. 2007, 23, 628-930.

38

Ernst, K. -H. Supramolecular surface chirality. Top. Curr. Chem. 2006, 265, 209-252.

39

Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-1802.

40

MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586-3616.

41

Michael, D.; Benjamin, I. Molecular dynamics simulation of the water-nitrobenzene interface. J. Electroanal. Chem. 1998, 450, 335-345.

42

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.

43

Chou, P. C.; Pagano, N. J. Elasticity Tensor, Dyadic, and Engineering Approaches; Van Nostrand: Princeton, 1967.

44

Lee, C.; Wei, X. D.; Kysar, J. W.; Home, J. Intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

45

Lu, Q.; Arroyo, M.; Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. D: Appl. Phys. 2009, 42, 102002.

46

Arroyo, M.; Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 2004, 69, 115415.

47

Kudin, K.; Scuseria, G. E. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406.

48

Chen, C. Y.; Rosenblatt, S.; Bolotin, K. I.; Kalb, W.; Kim, P.; Kymissis, I.; Stormer, H. L.; Heinz, T. F.; Hone, J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 2009, 4, 861-867.

49

Naik, A. K.; Hanay, M. S.; Hiebert, W. K.; Feng, X. L.; Roukes, M. L. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 2009, 4, 445-450.

50

Morse, P. M.; Ingard, K. U. Theoretical Acoustics, 1st ed.; Princeton University Press: Princeton, 1986.

51
Geller, M. R.; Varley, J. B. Friction in nanoelectromechanical systems: Clamping loss in the GHz regime. 2005, arXiv: cond-mat/0512710. arXiv. org e-Print archive. http://arxiv.org/abs/cond-mat/0512710v1 (accessed Jan 23, 2010).
52

Seoanez, C.; Guinea, F.; Neto, A. H. C. Dissipation in graphene and nanotube resonators. Phys. Rev. B 2007, 76, 125427.

53

Wang, B.; Král, P.; Thanopulos, I. Docking of chiral molecules on twisted and helical nanotubes: Nanomechanical control of catalysis. Nano Lett. 2006, 6, 1918-1921.

54

Garcia-Sanchez, D.; van der Zande, A.; San Paulo, A.; Lassagne, B.; McEuen, P.; Bachtold, A. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 2008, 8, 1399-1403.

Nano Research
Pages 472-480
Cite this article:
Russell J, Král P. Configuration-Sensitive Molecular Sensing on Doped Graphene Sheets. Nano Research, 2010, 3(7): 472-480. https://doi.org/10.1007/s12274-010-0007-7

758

Views

10

Downloads

6

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 11 February 2010
Revised: 06 April 2010
Accepted: 29 April 2010
Published: 16 June 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return