AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Biomimetic Corrugated Silicon Nanocone Arrays for Self-Cleaning Antireflection Coatings

Yandong Wang1Nan Lu1( )Hongbo Xu1Gang Shi1Miaojun Xu1Xiaowen Lin2Haibo Li1Wentao Wang1Dianpeng Qi1Yanqing Lu2Lifeng Chi1,3( )
State Key Laboratory of Supramolecular Structure and Materials Jilin UniversityChangchun 130012 China
National Laboratory of Solid State Microstructures Nanjing UniversityNanjing 210093 China
Physikalisches Institut and Center for Nanotechnology (CeNTech) Westfälische Wilhelms-Universität D-48149 Münster Germany
Show Author Information

Graphical Abstract

Abstract

Corrugated silicon nanocone (SiNC) arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings. The reflectance was reduced from above 35% to less than 0.7% in the range 400–1050 nm, and it remained below 0.5% at incidence angles up to 70° at 632.8 nm for both s- and p-polarized light. The fluorinated corrugated SiNC array surface exhibits superhydrophobic properties with a water contact angle of 164°.

Electronic Supplementary Material

Download File(s)
nr-3-7-520_ESM.pdf (596.2 KB)

References

1

Striemer, C. C.; Fauchet, P. M. Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 2002, 81, 2980–2982.

2

Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8, 1501–1505.

3

Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Blasi, B.; Heinzel, A.; Sporn, D.; Doll, W.; Wittwer, V. Antireflective transparent covers for solar devices. Sol. Energy 2000, 68, 357–360.

4

Lee, C.; Bae, S. Y.; Mobasser, S.; Manohara, H. A novel silicon nanotips antireflection surface for the micro sun sensor. Nano Lett. 2005, 5, 2438–2442.

5

Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.

6

Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

7

Boden, S. A.; Bagnall, D. M. Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 2008, 93, 133108.

8

Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774.

9

Heine, C.; Morf, R. H. Submicrometer gratings for solar energy applications. Appl. Opt. 1995, 34, 2476–2482.

10

Kanamori, Y.; Roy, E.; Chen, Y. Antireflection subwavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 2005, 7879, 287–293.

11

Aydin, C.; Zaslavsky, A.; Sonek, G. J.; Goldstein, J. Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures. Appl. Phys. Lett. 2002, 80, 2242–2244.

12

Zhang, G. M.; Zhang, J.; Xie, G. Y.; Liu, Z. F.; Shao, H. B. Cicada wings: A stamp from nature for nanoimprint lithography. Small 2006, 2, 1440–1443.

13

Sun, C. H.; Jiang, P.; Jiang, B. Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92, 061112.

14

Chen, H. L.; Chuang, S. Y.; Lin, C. H.; Lin, Y. H. Using colloidal lithography to fabricate and optimize subwavelength pyramidal and honeycomb structures in solar cells. Opt. Express 2007, 15, 14793–14803.

15

Lohmuller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Biomimetic interfaces for high-performance optics in the deep-UV light range. Nano Lett. 2008, 8, 1429–1443.

16

Wang, S.; Yu, X. Z.; Fan, H. T. Simple lithographic approach for subwavelength structure antireflection. Appl. Phys. Lett. 2007, 91, 061105.

17

Lee, Y.; Koh, K.; Na, H.; Kim, K.; Kang, J. J.; Kim, J. Lithography-free fabrication of large area subwavelength antireflecion structure using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 2009, 4, 364–370.

18

Kanamori, Y.; Hane, K.; Sai, H.; Yugami, H. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask. Appl. Phys. Lett. 2001, 78, 142.

19

Ting, C. J.; Huang, M. C.; Tsai, H. Y.; Chou, C. P.; Fu, C. C. Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology. Nanotechnology 2008, 19, 205301–205305.

20
Rybczynski, J.; Hilgendorff, M.; Giersig, M. Nanosphere lithography—Fabrication of various periodic magnetic particle arrays using versatile nanosphere masks. In Low-Dimensional Systems: Theory, Reparation, and Some Applications (NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, Vol. 91). Liz-Marzán, L. M.; Giersig, M., Eds.; Springer: Berlin, 2003; pp 163–172.https://doi.org/10.1007/978-94-010-0143-4_14
21

Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972–1975.

22

Lalanne, P.; Morris, G. M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 1997, 8, 53–56.

23

Kanamori, Y.; Sasaki, M.; Hane, K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999, 24, 1422–1424.

24

Chen, Q.; Hubbard, G.; Shields, P. A.; Liu, C.; Allsopp, D. W. E.; Wang, W. N.; Abott, S. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 2009, 94, 263118.

25

Chiu, C. H.; Yu, P. C.; Kuo, H. C.; Chen, C. C.; Lu, T. C.; Wang, S. C.; Hsu, S. H.; Cheng, Y. J.; Chang, Y. C. Broadband and omnidirectional antireflection employing disordered GaN nanopillars. Opt. Express 2008, 16, 8748–8754.

26

Yu, Z. N.; Gao, H.; Wu, W.; Ge, H. X.; Chou, S. Y. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci. Technol. B 2003, 21, 2874–2877.

27

Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 2000, 11, 161–164.

28

Li, X.; Gao, J. P.; Xue, L. J.; Han, Y. C. Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings. Adv. Funct. Mater. 2010, 20, 259–265.

29

Moharam, M. G.; Pommet, D. A.; Gram, E. B.; Gaylord, T. K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076.

30

Cao, M. W.; Song, X. Y.; Zhai, J.; Wang, J. B.; Wang, Y. L. Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J. Phys. Chem. B 2006, 110, 13072–13075.

31

Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Wang, Z. H.; Sun, Z. Q.; Guo, J. R.; Yang, B. Bioinspired silicon hollow-tip arrays for high performance broadband. J. Mater. Chem. 2009, 19, 1806–1810.

Nano Research
Pages 520-527
Cite this article:
Wang Y, Lu N, Xu H, et al. Biomimetic Corrugated Silicon Nanocone Arrays for Self-Cleaning Antireflection Coatings. Nano Research, 2010, 3(7): 520-527. https://doi.org/10.1007/s12274-010-0012-x

883

Views

33

Downloads

98

Crossref

N/A

Web of Science

103

Scopus

0

CSCD

Altmetrics

Received: 28 April 2010
Revised: 25 May 2010
Accepted: 25 May 2010
Published: 12 June 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return