AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Direct Comparison of Catalyst-Free and Catalyst-Induced GaN Nanowires

Caroline Chèze1,( )Lutz Geelhaar1,Oliver Brandt1Walter M. Weber2,Henning Riechert1,Steffen Münch3Ralph Rothemund3Stephan Reitzenstein3Alfred Forchel3Thomas Kehagias4Philomela Komninou4George P. Dimitrakopulos4Theodoros Karakostas4
Paul-Drude-Institut für Festkörperelektronik 5-7 HausvogteiplatzBerlin 10117 Germany
NaMLab gGmbHDresden 01187 Germany
Technische Physik, Universität Würzburg Am HublandWürzburg 97074 Germany
Physics Department Aristotle UniversityThessaloniki 54124 Greece

Former address: Qimonda, Munich 81730, Germany

Show Author Information

Graphical Abstract

Abstract

GaN nanowires have been grown by molecular beam epitaxy either catalyst-free or catalyst-induced by means of Ni seeds. Under identical growth conditions of temperature and Ⅴ/Ⅲ ratio, both types of GaN nanowires are of wurtzite structure elongated in the Ga-polar direction and are constricted by M-plane facets. However, the catalyst-induced nanowires contain many more basal-plane stacking faults and their photoluminescence is weaker. These differences can be explained as effects of the catalyst Ni seeds.

References

1

Lieber, C. M.; Wang Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–108.

2

Wagner, R. S.; Ellis W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

3

Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 2001, 89, 1008–1016.

4

Persson, A. I.; Larsson, M. W.; Stenstrom, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.

5

Putnam, M. C.; Filler, M. A.; Kayes, B. M.; Kelzenberg, M. D.; Guan, Y.; Lewis, N. S.; Eiler, J. M.; Atwater, H. A. Secondary ion mass spectrometry of vapor–liquid–solid grown, Au-catalyzed, Si wires. Nano Lett. 2008, 8, 3109–3113.

6

Oh, S. H.; Benthem, K. V.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett. 2008, 8, 1016–1019.

7

Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E.; Lauhon, L. J. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

8

Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 2003, 15, 635–640.

9

Noborisaka, J; Motohisa, J; Fukui, T. Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapour-phase epitaxy. Appl. Phys. Lett. 2005, 86, 213102.

10

Mohammad, S. N. Self-catalysis: A contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition. J. Chem. Phys. 2006, 125, 094705.

11

Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.

12

Kim, B. S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 2009, 9, 864–869.

13

Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.

14

Geelhaar, L.; Chèze, C.; Weber, W. M.; Averbeck, R.; Riechert, H.; Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Karakostas, T. Axial and radial growth of Ni-induced GaN nanowires. Appl. Phys. Lett. 2007, 91, 093113.

15
Chèze, C. Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approach. Ph. D. Dissertation, Humboldt-Universität zu Berlin, Germany, 2010.
16

Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. 1997, 36, L459–L462.

17

Calleja, E.; Ristić, J.; Fernández-Garrido, S.; Cerutti, L.; Sánchez-García, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sánchez, G.; Griol, A.; Sánchez, B. Growth, morphology, and structural properties of group-Ⅲ-nitride nanocolumns and nanodisks. Phys. Status Solidi B 2007, 244, 2816–3837.

18

Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Lüth, H. Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl. Phys. Lett. 2007, 90, 123117.

19

Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248–2251.

20

Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Chèze, C.; Geelhaar, L.; Riechert, H.; Karakostas, T. Atomic-scale configuration of catalyst particles on GaN nanowires. Phys. Status Solidi C 2008, 5, 3716–3719.

21

Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Arbiol, J.; Estradé, S.; Peirò, F.; Morante, J. R.; Eickhoff, M. Nucleation and growth of GaN nanorods on Si(111) surfaces by plasma-assisted molecular beam epitaxy—The infuence of Si- and Mg-doping. J. Appl. Phys. 2008, 104, 034309.

22

Qian, F.; Li, Y.; Gradečak, S.; Park, H. G.; Dong, Y.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701–706.

23

Kuykendall, T.; Pauzaukie, P. J.; Zhang, Y. F.; Goldberger, J.; Sirbuly, D.; Denlinger, J.; Yang, P. D. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 2004, 3, 524–528.

24

Chin, A. H.; Ahn, T. S.; Li. H; Vaddiraju. S; Bardeen, C. J.; Ning, C. Z.; Sunkara, M. K. Photoluminescence of GaN nanowires of different crystallographic orientations. Nano Lett. 2007, 7, 626–631.

25

Cherns, D.; Meshi, L.; Griffiths, I.; Khongphetsak, S.; Novikov, S. V.; Farley, N.; Campion, R. P.; Foxon, C. T. Defect reduction in GaN/(0001) sapphire flms grown by molecular beam epitaxy using nanocolumn intermediate layers. Appl. Phys. Lett. 2008, 92, 121902.

26

Smith, A. R.; Feenstra, R. M.; Greve, D. W.; Neugebauer, J.; Northrup, J. E. Reconstructions of the GaN(0001) surface. Phys. Rev. Lett. 1997, 79, 3934–3937.

27

Yoshikawa, A.; Xu, K. Polarity selection process and polarity manipulation of GaN in MOVPE and RF-MBE growth. Thin Solid Films 2002, 412, 38–43.

28

Georgakilas, A.; Mikroulis, S.; Cimalla, V.; Zervos, M.; Kostopoulos, A.; Komninou, P.; Kehagias, T.; Karakostas, T. Effects of the sapphire nitridation on the polarity and structural properties of GaN layers grown by plasma-assisted MBE. Phys. Status Solidi A 2001, 188, 567–570.

29

Lari, L.; Murray, R. T.; Bullough, T. J.; Chalker, P. R.; Gass, M.; Chèze, C.; Geelhaar, L.; Riechert, H. Defect characterization and analysis of Ⅲ–Ⅴ nanowires grown by Ni-promoted MBE. Phys. Status Solidi A 2008, 205, 2589–2592.

30

Zhao, Y.; Tu, W.; Bae, I. T.; Seong, T. Y. Growth of cubic GaN by phosphorus-mediated molecular beam epitaxy. Appl. Phys. Lett. 1999, 74, 3182–3184.

31

Chisholm, J. A.; Bristowe, P. D. Ab initio study of the effect of doping on stacking faults in GaN. J. Cryst. Growth 2001, 230, 432–437.

32

Cimpoiasu, E.; Stern, E.; Klie, R.; Munden, R. A.; Cheng, G.; Reed, M. A. The effect of Mg doping on GaN nanowires. Nanotechnology 2006, 17, 5735–5739.

33

Arbiol, J.; Estradé, S.; Prades, J. D.; Cirera, A.; Furtmayr, F.; Stark, C.; Laufer, A.; Stutzmann, M.; Eickhoff, M.; Gass, M. H., et al. Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 2009, 20, 145704.

34

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of Ⅲ–Ⅴ zinc-blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

35

Tarsa, E. J.; Heying, B.; Wu, X. H.; Fini, P.; DenBaars, S. P.; Speck, J. S. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 1997, 82, 5472–5479.

36

Zywietz, T.; Neugebauer, J.; Scheffler, M. Adatom diffusion at GaN (0001) and (0001) surfaces. Appl. Phys. Lett. 1998, 73, 487–489.

37

Shi, B. M.; Xie, M. H.; Wu, H. S.; Wang, N.; Tong, S. Y. Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy. App. Phys. Lett. 2006, 89, 151921.

38
Robins, L. H., Bertness, K. A., Barker, J. M., Sanford, N. A.; Schlager, J. B. Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. I. Near-band-edge luminescence and strain effects. J. Appl. Phys. 2007, 101, 113505 and references therein.https://doi.org/10.1063/1.2736264
39

Liu, R.; Bell, A.; Ponce, F. A.; Chen, C. Q.; Yang, J. W.; Kahn, M. A. Luminescence from stacking faults in gallium nitride. Appl. Phys. Lett. 2005, 86, 021908.

40

Paskov, P. P.; Schifano, R.; Monemar, B.; Paskova, T.; Figge, S.; Hommel, D. Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 2005, 98, 093519.

41

Salviati, G.; Albrecht, M.; Zanotti-Fregonara, C.; Armani, N.; Mayer, M.; Shreter, Y.; Guzzi, M.; Melnik, Y.; Vvassilevski, K.; Dmitriev, V. A.; Strunk, H. P. Cathodoluminescence and transmission electron microscopy study of the influence of crystal defects on optical transitions in GaN. Phys. Status Solidi A 1999, 171, 325–339.

42

Calleja, E.; Sánchez-García, M. A.; Sánchez, F. J.; Calle, F.; Naranjo, F. B.; Muñoz, E.; Jahn, U.; Ploog, K. Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Phys. Rev. B 2000, 62, 16826–16834.

43

Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Laufer, A.; Meyer, B. K.; Eickhoff, M. Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2008, 104, 074309.

44

Yoo, J.; Hong, Y. J.; An, S. J.; Yi, G. C.; Chon, B.; Joo, T.; Kim, J. W.; Lee, J. S. Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl. Phys. Lett. 2006, 89, 043124.

45

Corfdir, P.; Lefebvre, P.; Ristić, J.; Valvin, P.; Calleja, E.; Trampert, A.; Ganière, J. D.; Deveaud-Plédran, B. Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates. J. Appl. Phys. 2009, 105, 013113.

46

Brandt, O.; Yang, B.; Wünsche, H. J.; Jahn, U.; Ringling, J.; Paris, G.; Grahn, H. T.; Ploog, K. H. Impact of exciton diffusion on the optical properties of thin GaN layers. Phys. Rev. B 1998, 58, R13407–R13410.

47

Azize, M.; Leroux, M.; Laugt, M.; Gibart, P.; Bougrioua, Z. Strain and microstructure in Fe-doped GaN layers grown by low pressure metalorganic vapour phase epitaxy. Phys. Status Solidi A 2006, 203, 1744–1748.

48

Aggerstam, T.; Pinos, A.; Marcinkevicius, S.; Linnarsson, M.; Lourdudoss, S. Electron and hole capture cross-sections of Fe acceptors in GaN: Fe epitaxially grown on sapphire. J. Electron. Mater. 2007, 36, 1621–1624.

49
Lari, L.; Murray, R. T.; Bullough, T. J.; Chalker, P. R.; Gass, M. H.; Chèze, C.; Geelhaar, L.; Riechert, H. Electron microscopy analysis of AlGaN/GaN nanowires grown by catalyst-assisted molecular beam epitaxy. In Microscopy of Semiconducting Materials 2007: Proceedings of the 15th Conference, 2–5 April 2007, Cambridge, UK; Cullis A. G; Midgley, P. A., Eds; Springer & Canopus Publishing Limited 2007, pp. 221–224.https://doi.org/10.1007/978-1-4020-8615-1_48
Nano Research
Pages 528-536
Cite this article:
Chèze C, Geelhaar L, Brandt O, et al. Direct Comparison of Catalyst-Free and Catalyst-Induced GaN Nanowires. Nano Research, 2010, 3(7): 528-536. https://doi.org/10.1007/s12274-010-0013-9

764

Views

32

Downloads

154

Crossref

N/A

Web of Science

159

Scopus

0

CSCD

Altmetrics

Received: 05 May 2010
Revised: 02 June 2010
Accepted: 02 June 2010
Published: 09 July 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return