Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a novel method for rapid, colorimetric detection of a specific deoxyribonucleic acid (DNA) sequence by carrying out a polymerase chain reaction in the presence of gold nanoparticles functionalized with two primers. Extension of the primers when the target DNA is present as a template during the polymerase chain reaction process affords the complementary sequences on the gold nanoparticle surfaces and results in the formation of gold nanoparticle aggregates with a concomitant color change from red to pinkish/purple. This method provides a convenient and straightforward solution for ultrasensitive DNA detection without any further post-treatment of the polymerase chain reaction products being necessary, and is a promising tool for rapid disease diagnostics and gene sequencing.
Gilliland, G.; Perrin, S.; Blanchard, K.; Bunn, H. F. Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 1990, 87, 2725–2729.
Park, S. J.; Taton, T. A.; Mirkin, C. A. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, 1503–1506.
Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.
Laure, F.; Rouzioux, C.; Veber, F.; Jacomet, C.; Courgnaud, V.; Blanche, S.; Burgard, M.; Griscelli, C.; Brechot, C. Detection of HTV1 DNA in infants and children by means of the polymerase chain reaction. The Lancet 1988, 332, 538–541.
Dougan, J. A.; Karlsson, C.; Smith, W. E.; Graham, D. Enhanced oligonucleotide–nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res. 2007, 35, 3668–3675.
Husale, S.; Persson, H. H. J.; Sahin, O. DNA nano-mechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009, 462, 1075–1078.
Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal. Chem. 2007, 79, 4215–4221.
Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of poly-nucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.
Lin, C. X.; Xie, M. Y.; Chen, J. J. L.; Liu, Y.; Yan, H. Rolling-circle amplification of a DNA nanojunction. Angew. Chem. Int. Ed. 2006, 45, 7537–7539.
De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.
Marques, P. R. B. D.; Lermo, A.; Campoy, S.; Yamanaka, H.; Barbe, J.; Alegret, S.; Pividori, M. I. Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Anal. Chem. 2009, 81, 1332–1339.
Xu, X. Y.; Rosi, N. L.; Wang, Y. H.; Huo, F. W.; Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 2006, 128, 9286–9287.
Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.
Kim, E. Y.; Stanton, J.; Vega, R. A.; Kunstman, K. J.; Mirkin, C. A.; Wolinsky, S. M. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res. 2006, 34, e54.
Naik, R. R.; Jones, S. E.; Murray, C. J.; McAuliffe, J. C.; Vaia, R. A.; Stone, M. O. Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv. Funct. Mater. 2004, 14, 25–30.
VanGuilder, H. D.; Vrana, K. E.; Freeman, W. M. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44, 619–626.
Liu, J. W.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 2006, 1, 246–252.
Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009, 323, 112–116.
Zhang, J.; Liu, Y.; Ke, Y.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.
Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y.; Yan, H. DNA templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 2006, 45, 730–735.
Chen, C.; Song, G. T.; Ren, J. S.; Qu, X. G. A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. Chem. Commun. 2008, 6149–6151.
Verma, A.; Srivastava, S.; Rotello, V. M. Modulation of the interparticle spacing and optical behavior of nanoparticle ensembles using a single protein spacer. Chem. Mater. 2005, 17, 6317–6322.
Srivastava, S.; Frankamp, B. L.; Rotello, V. M. Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem. Mater. 2005, 17, 487–490.
Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic in groundwater. Angew. Chem. Int. Ed. 2009, 48, 9668–9671.
Liu, J. W.; Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126, 12298–12305.
805
Views
25
Downloads
30
Crossref
N/A
Web of Science
30
Scopus
0
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.