AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique

Anuj R. Madaria§Akshay Kumar§Fumiaki N. IshikawaChongwu Zhou( )
Department of Electrical Engineering and Center for Energy Nanoscience and Technology, University of Southern California Los AngelesCalifornia 90089 USA

§These authors contributed equally.

Show Author Information

Graphical Abstract

Abstract

Silver nanowire films are promising alternatives to tin-doped indium oxide (ITO) films as transparent conductive electrodes. In this paper, we report the use of vacuum filtration and a polydimethylsiloxane (PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates, bringing advantages such as the capability of patterned transfer, the best performance among various ITO alternatives (10 Ω/sq at 85% transparency), and good adhesion to the underlying substrate, thus eliminating the previously reported adhesion problem. In addition, our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes, making it a scalable process. Furthermore, use of an anodized aluminum oxide (AAO) membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency. Using this transfer technique, we obtained silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85%, a sheet resistance of 10 Ω/sq, with good mechanical flexibility. Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume.

Electronic Supplementary Material

Download File(s)
nr-3-8-564_ESM.pdf (658.2 KB)

References

1

Haacke, G. Transparent conducting coatings. Ann. Rev. Mater. Sci. 1977, 7, 73–93.

2

Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598.

3

Thomas, G. Invisible circuits. Nature 1997, 389, 907–908.

4

Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44.

5

Chopra, K. L.; Major, S.; Pandya, D. K. Transparent conductors—A status review. Thin Solid Films 1983, 102, 1–46.

6

Hartnagel, H. L.; Dawar, A. L.; Jain, A. K.; Jagadish, C. Semiconducting Transparent Thin Films; Institute of Physics Publishing: Philadelphia, 1995.

7

Meiss, J.; Riede, M. K.; Leo, K. Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes. Appl. Phys. Lett. 2009, 94, 013303.

8

O'Connor, B.; Haughn, C.; An, K. H.; Pipe, K. P.; Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 2008, 93, 223304.

9

Kang, M. G.; Kim, M. S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.

10

Tvingstedt, K.; Inganas, O. Electrode grids for ITO-free organic photovoltaic devices. Adv. Mater. 2007, 19, 2893–2897.

11

Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.

12

Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

13

Geng, H. -Z.; Lee, D. S.; Kim, K. K.; Han, G. H.; Park, H. K.; Lee, Y. H. Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structure. Chem. Phys. Lett. 2008, 455, 275–278.

14

Doherty, E. M.; De, S.; Lyons, P. E.; Shmeliov, A.; Nirmalraj, P. N.; Scardaci, V.; Joimel, J.; Blau, W. J.; Boland, J. J.; Coleman, J. N. The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon 2009, 47, 2466–2473.

15

Zhou, Y.; Hu, L.; Grüner, G. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 2006, 88, 123109.

16

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

17

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Mann, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379–1383.

18

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

19

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

20

Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Thompson, M. E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.

21

Li, J.; Hu, L.; Wang, L.; Zhou, Y.; Gruner, G.; Marks, T. J. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 2006, 6, 2472–2477.

22

Wu, J.; Agarwal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

23

Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. -J.; Dennler, G.; Sariciftci, N. S.; Hu, L.; Grüner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.

24

Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.

25

Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

26

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

27

Zaumseil, J.; Someya, T.; Baldwin, K.; Bao, Z.; Loo, Y. -L.; Rogers, J. A. Nanoscale organic transistors that use source/ drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 2003, 82, 793–795.

28

Choi, K. M.; Rogers, J. A. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 2003, 125, 4060–4061

29

Lee, T. -W.; Zaumseil, J.; Bao, Z.; Hsu, J. W. P.; Rogers, J. A. Organic light-emitting diodes formed by soft contact lamination. Proc. Nat. Acad. Sci. USA 2004, 101, 429–433.

30

Sun, Y.; Rogers, J. A. Fabricating semiconductor nano/ microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.

31

Meitl, M. A.; Zhu, Z. -T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

32

Pike, G. E.; Seager, C. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.

33

Yi, Y.; Sastry, A. Analytical approximation of the two-dimensional percolation threshold for fields of overlapping ellipses. Phys. Rev. E 2002, 66, 066130.

34

Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–588.

35

Hines, D. R.; Mezhenny, S.; Breban, M.; Williams, E. D.; Ballarotto, V. W.; Esen, G.; Southard, A.; Fugrer, M. S. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 2005, 86, 163101.

36

Freeman, R. G.; Graber, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 1995, 267, 1629–1632.

37

Stauffer, G. Introduction to Percolation Theory; Taylor & Francis: London, 1985.

38

Crawford, G. P. Flexible Flat Panel Displays; John Wiley & Sons: England, 2005.

39

Li, J.; Liu, J.; Wang, L.; Marks, T. J.; Hu, L.; Grüner, G. Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. Appl. Phys. Lett. 2008, 93, 083306.

40

Pagliaro, M.; Ciriminna, R.; Palmisano, G. Flexible solar cells. ChemSusChem 2008, 1, 880–891.

41

Chen, P. -C.; Shen, G.; Sukcharoenchoke, S.; Zhou, C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 2009, 94, 043113.

42

Ishikawa, F. N.; Chang, H. -K.; Ryu, K.; Chen, P. -C.; Badmaev, A.; De Arco, L. G.; Shen, G.; Zhou, C. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

43

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2006, 448, 457–460.

44

Tung, V. C.; Chen, L.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949–1955.

Nano Research
Pages 564-573
Cite this article:
Madaria AR, Kumar A, Ishikawa FN, et al. Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique. Nano Research, 2010, 3(8): 564-573. https://doi.org/10.1007/s12274-010-0017-5

620

Views

23

Downloads

469

Crossref

N/A

Web of Science

502

Scopus

0

CSCD

Altmetrics

Received: 17 April 2010
Revised: 28 May 2010
Accepted: 05 June 2010
Published: 26 July 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return