AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes

Xiaojun Zhang1,2Wenhui Shi1Jixin Zhu1Weiyun Zhao1Jan Ma1Subodh Mhaisalkar1,3Tuti Lim Maria4,5Yanhui Yang6Hua Zhang1Huey Hoon Hng1( )Qingyu Yan1,3( )
School of Materials Science and EngineeringNanyang Technological University639798Singapore
College of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241000China
Energy Research InstituteNanyang Technological University637459Singapore
School of Civil and Environmental EngineeringNanyang Technological University639798Singapore
School of Life Sciences and Chemical TechnologyNgee Ann Polytechnic535 Clementi RoadSingapore
School of Chemical and Biomolecular EngineeringNanyang Technological University637459Singapore
Show Author Information

Graphical Abstract

Abstract

We report a facile way to grow various porous NiO nanostructures including nanoslices, nanoplates, and nanocolumns, which show a structure-dependence in their specific charge capacitances. The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)2 nanoplates synthesized by a hydrothermal process. Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)2 nanostructures is related to their morphology. In electrochemical tests, the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles. Interestingly, the formation of nanocolumns by the stacking of β-Ni(OH)2 nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing, and the surface area is over five times larger than that of NiO nanoslices and nanoplates. Consequently, the specific capacitance of the porous NiO nanocolumns (390 F/g) is significantly higher than that of the nanoslices (176 F/g) or nanoplates (285 F/g) at a discharge current of 5 A/g. This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.

Electronic Supplementary Material

Download File(s)
nr-3-9-643_ESM.pdf (451 KB)

References

1

Kim, E.; Son, D.; Kim, T. G.; Cho, J.; Park, B.; Ryu, K. S.; Chang, S. H. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Ed. 2004, 43, 5987-5990.

2

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397-4401.

3

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258-262.

4

Lin, Z. Z.; Jiang, F. L.; Chen, L.; Yue, C. Y.; Yuan, D. Q.; Lan, A. J.; Hong, M. C. A highly symmetric porous framework with multi-intersecting open channels. Cryst. Growth Des. 2007, 7, 1712-1715.

5

Wan, Y.; Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821-2860.

6

Zhao, Q. R.; Zhang, Z. G.; Dong, T.; Xie, Y. Facile synthesis and catalytic property of porous tin dioxide nanostructures. J. Phys. Chem. B 2006, 110, 15152-15156.

7

Seisenbaeva, G. A.; Moloney, M. P.; Tekoriute, R.; Hardy-Dessources, A.; Nedelec, J. M.; Gun'ko, Y. K.; Kessler, V. G. Biomimetic synthesis of hierarchically porous nanostructured metal oxide microparticles—potential scaffolds for drug delivery and catalysis. Langmuir 2010, 26, 9809-9817.

8

Wang, Z. L.; Liu, R. X.; Zhao, F. Y.; Liu, X. J.; Lv, M. F.; Meng, J. Facile synthesis of porous Fe7Co3/carbon nano-composites and their applications as magnetically separable adsorber and catalyst support. Langmuir 2010, 26, 10135-10140.

9

Sadek, A. Z.; Zheng, H. D.; Breedon, M.; Bansal, V.; Bhargava, S. K.; Latham, K.; Zhu, J. M.; Yu, L. S.; Hu, Z.; Spizzirri, P. G.; Wlodarski, W.; Kalantar-Zadeh, K. High-temperature anodized WO3 nanoplatelet films for photo-sensitive devices. Langmuir 2009, 25, 9545-9551.

10

Robinson, D. B.; Wu, C. A. M.; Ong, M. D.; Jacobs, B. W.; Pierson, B. E. Effect of electrolyte and adsorbates on charging rates in mesoporous gold electrodes. Langmuir 2010, 26, 6797-6803.

11

Stimpfling, T.; Leroux, F. Supercapacitor-type behavior of carbon composite and replica obtained from hybrid layered double hydroxide active container. Chem. Mater. 2010, 22, 974-987.

12

Carriazo, D.; Pico, F.; Gutierrez, M. C.; Rubio, F.; Rojo, J. M.; Monte, F. Block-copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 773-780.

13

Wang, K. X.; Wang, Y. G.; Wang, Y. R.; Hosono, E.; Zhou, H. S. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 2009, 113, 1093-1097.

14

Suppes, G. M.; Deore, B. A.; Freund, M. S. Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 2008, 24, 1064-1069.

15

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.

16

Sun, Y. K.; Kim, D. H.; Yoon, C. S.; Myung, S. T.; Prakash, J.; Amine, K. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries. Adv. Funct. Mater. 2010, 20, 485-491.

17

Nam, K. W.; Leea, C. W.; Yang, X. Q.; Choc, B. W.; Yoon, W. S.; Kim, K. B. Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes. J. Power Sources 2009, 188, 323-331.

18

Li, C.; Wei, W.; Fang, S. M.; Wang, H. X.; Zhang, Y.; Gui, Y. H.; Chen, R. F. A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries. J. Power Sources 2010, 195, 2939-2944.

19

Fu, G. R.; Hu, Z. A.; Xie, L. J.; Jin, X. Q.; Xie, Y. L.; Wang, Y. X.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 2009, 4, 1052-1062.

20

Yang, G. W.; Xu, C. L.; Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 6537-6539.

21

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.

22

Liu, K. C.; Anderson, M. A. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143, 124-130.

23

Nam, K. W.; Kim, K. B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. J. Electrochem. Soc. 2002, 149, 346-354.

24

Chang, K. H.; Hu, C. C.; Chou, C. Y. Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nano-crystallites: Independent control of crystal size and water content. Chem. Mater. 2007, 19, 2112-2119.

25

Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors Nano Lett. 2006, 6, 2690-2695.

26

Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772-5777.

27

Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213-4215.

28

Zhu, J. X.; Gui, Z. From layered hydroxide compounds to labyrinth-like NiO and Co3O4 porous nanosheets. Mater. Chem. Phys. 2009, 118, 243-248.

29

Qiu, Y. J.; Yu, J.; Zhou, X. S.; Tan, C. L.; Yin, J. Synthesis of porous NiO and ZnO submicro- and nanofibers from electrospun polymer fiber templates. Nanoscale Res. Lett. 2009, 4, 173-177.

30

Yuan, C. Z.; Chen, L.; Gao, B.; Su, L. H.; Zhang, X. G. Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. J. Mater. Chem. 2009, 19, 246-252.

31

Yuan, C. Z.; Gao, B.; Zhang, X. G. Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 2007, 173, 606-612.

32

Xing, W.; Li, F.; Yan, Z. F.; Lu, G. Q. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources 2004, 134, 324-330.

33

Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A. V.; Bruce, P. G. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J. Am. Chem. Soc. 2008, 130, 5262-5266.

34

Yan, H. W.; Blanford, C. F.; Holland, B. T.; Parent, M.; Smyrl, W. H.; Stein, A. A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 1999, 11, 1003-1006.

35

Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347-351.

36

Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J Am. Chem. Soc. 2010, 132, 6982-6990.

37

Han, Y.; Zhang, D. L.; Chang, L. L.; Sun, J. L.; Zhao, L.; Zou, X. D.; Ying, J. Y. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nature Chem. 2009, 1, 123-127.

38

Chen, C.; Cai, W. M.; Long, M. C.; Zhang, J. Y.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y. Template-free sol-gel preparation and characterization of free-standing visible light responsive C, N-modified porous monolithic TiO2. J Hazard. Mater. 2010, 178, 560-565.

39

Hu, X. L.; Li, G. S.; Yu, J. C. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 2010, 26, 3031-3039.

40

Frey, S.; Keipert, S.; Chazalviel, J. N.; Ozanam, F.; Carstensen, J.; Foll, H. Electrochemical formation of porous silica: Toward an understanding of the mechanisms. Phys. Status Solidi A 2007, 204, 1250-1254.

41

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.

42

Zhang, Z. Y.; Zuo, F.; Feng, P. Y. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J. Mater. Chem. 2010, 20, 2206-2212.

43

Peterson, A. K.; Morgan, D. G.; Skrabalak, S. E. Aerosol synthesis of porous particles using simple salts as a pore template. Langmuir 2010, 26, 8804-8809.

44

Justin, P.; Meher, S. K.; Rao, G. R. Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J. Phys. Chem. C 2010, 114, 5203-5210.

45

Zhao, B.; Ke, X. K.; Bao, J. H.; Wang, C. L.; Dong, L.; Chen, Y. W.; Chen, H. L. Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J. Phys. Chem. C 2009, 113, 14440-14447.

46

Kuang, D. B.; Lei, B. X.; Pan, Y. P.; Yu, X. Y.; Su, C. Y. Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J. Phys. Chem. C 2009, 113, 5508-5513.

47

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Grune, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-1876.

48

Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2007, 48, 373-376.

Nano Research
Pages 643-652
Cite this article:
Zhang X, Shi W, Zhu J, et al. Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes. Nano Research, 2010, 3(9): 643-652. https://doi.org/10.1007/s12274-010-0024-6

795

Views

22

Downloads

525

Crossref

N/A

Web of Science

545

Scopus

0

CSCD

Altmetrics

Received: 28 June 2010
Revised: 29 July 2010
Accepted: 30 July 2010
Published: 09 September 2010
© The Author(s) 2010

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return