AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Development of Novel Supported Gold Catalysts: A Materials Perspective

Department of Environmental Science and EngineeringFudan UniversityShanghai200433China
Chemical Sciences DivisionOak Ridge National Laboratory, Oak RidgeTN37831USA
Show Author Information

Graphical Abstract

Abstract

Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO2), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO2 and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.

References

1

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science2003, 299, 1688-1691.

2

Kung, H. H.; Kung, M. C. Heterogeneous catalysis: What lies ahead in nanotechnology. Appl. Catal. A2003, 246, 193-196.

3

Somorjai, G. A.; Rioux, R. M. High technology catalysts towards 100% selectivity: Fabrication, characterization and reaction studies. Catal. Today2005, 100, 201-215.

4

Somorjai, G. A.; Park, J. Y. Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top. Catal.2008, 49, 126-135.

5

Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.

6

Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res.2009, 2, 1-29.

7

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res.2009, 2, 30-46.

8

Zaera, F. The new materials science of catalysis: Toward controlling selectivity by designing the structure of the active site. J. Phys. Chem. Lett.2010, 1, 621-627.

9

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science1998, 281, 1647-1650.

10

Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science2004, 306, 252-255.

11

Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed.2004, 43, 4412-4456.

12

Daniel, M. -C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004, 104, 293-346.

13

Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed.2005, 44, 7852-7872.

14

Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films2010, 518, 3127-3150.

15

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett.1987, 405-408.

16

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.1989, 115, 301-309.

17

Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal.1993, 144, 175-192.

18

Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. -Sci. Eng.1999, 41, 319-388.

19

Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A2001, 222, 427-437.

20

Choudhary, T. V.; Goodman, D. W. Oxidation catalysis by supported gold nano-clusters. Top. Catal.2002, 21, 25-34.

21

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed.2006, 45, 7896-7936.

22

Kung, M. C.; Davis, R. J.; Kung, H. H. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C2007, 111, 11767-11775.

23

Carabineiro, S. A. C.; Thompson, D. T. Catalytic applications for gold nanotechnology. In Nanocatalysis; Heiz, U.; Landman, U., eds.; Springer: Berlin, 2007; pp. 377-489.

24

Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev.2008, 37, 2077-2095.

25

Corma, A.; Garcia, H. Supported gold nanoparticles for organic reactions. Chem. Soc. Rev.2008, 37, 2096-2126.

26

Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal.2003, 216, 425-432.

27

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science2003, 301, 935-938.

28

Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.

29

Chen, M. S.; Goodman, D. W. Structure-activity relationships in supported Au catalysts. Catal. Today2006, 111, 22-33.

30

Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal.2007, 44, 15-26.

31

Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev.2007, 107, 2709-2724.

32

Fierro-Gonzalez, J. C.; Gates, B. C. Catalysis by gold dispersed on supports: The importance of cationic gold. Chem. Soc. Rev.2008, 37, 2127-2134.

33

Gong, J. L.; Mullins, C. B. Surface science investigation of oxidative chemistry on gold. Acc. Chem. Res.2009, 42, 1063-1073.

34

Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett.1997, 44, 83-87.

35

Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B2002, 106, 7634-7642.

36

Wolf, A.; Schüth, F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A2002, 226, 1-13.

37

Moreau, F.; Bond, G. C.; Taylor, A. O. Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents. J. Catal.2005, 231, 105-114.

38

Li, W. C.; Comotti, M.; Schüth, F. Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J. Catal.2006, 237, 190-196.

39

Moreau, F.; Bond, G. C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Appl. Catal. A2006, 302, 110-117.

40

Al-Sayari, S.; Carley, A. F.; Taylor, S. H.; Hutchings, G. J. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Top. Catal.2007, 44, 123-128.

41

Horváth, A.; Beck, A.; Sárkány, A.; Stefler, G.; Varga, Z.; Geszti, O.; Tóth, L.; Guczi, L. Silica-supported Au nanoparticles decorated by TiO2: Formation, morphology, and CO oxidation activity. J. Phys. Chem. B2006, 110, 15417-15425.

42

Glaspell, G.; Hassan, H. M. A.; Elzatahry, A.; Fuoco, L.; Radwan, N. R. E.; El-Shall, M. S. Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts. J. Phys. Chem. B2006, 110, 21387-21393.

43

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed.2006, 45, 8224-8227.

44

Zhong, L. -S.; Hu, J. -S.; Cao, A. M.; Liu, Q.; Song, W. G.; Wan, L. -J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem. Mater.2007, 19, 1648-1655.

45

Zhong, Z. Y.; Ho, J.; Teo, J.; Shen, S. C.; Gedanken, A. Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem. Mater.2008, 19, 4776-4782.

46

Yu, K.; Wu, Z. C.; Zhao, Q. R.; Li, B. X.; Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C2008, 112, 2244-2247.

47

Wang, D. H.; Ma, Z.; Dai, S.; Liu, J.; Nie, Z. M.; Engelhard, M. H.; Huo, Q. S.; Wang, C. M.; Kou, R. Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. J. Phys. Chem. C2008, 112, 13499-13509.

48

Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett.2008, 8, 931-934.

49

Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett.2008, 8, 2867-2871.

50

Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed.2008, 47, 8924-8928.

51

Zhou, Z.; Kooi, S.; Flytzani-Stephanopoulos, M.; Saltsburg, H. The role of the interface in CO oxidation on Au/CeO2 multilayer nanotowers. Adv. Funct. Mater.2008, 18, 2801-2807.

52

Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res.2009, 2, 975-983.

53

Liu, X. Y.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. -Y.; Su, D. -S.; Li, J. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports. Chem. Mater.2009, 21, 410-418.

54

Wang, C.; Yin, H. F.; Chan, R.; Peng, S.; Dai, S.; Sun, S. H. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater.2009, 21, 433-435.

55

Yen, C. -W.; Lin, M. -L.; Wang, A. Q.; Chen, S. -A.; Chen, J. -M.; Mou, C. -Y. CO oxidation catalyzed by Au-Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C2009, 41, 17831-17839.

56

Jiang, H. -L.; Umegaki, T.; Akita, T.; Zhang, X. -B.; Haruta, M.; Xu, Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chem. Eur. J.2010, 16, 3132-3137.

57

Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater.2010, 22, 3277-3282.

58

Cao, C. -Y.; Cui, Z. -M.; Chen, C. -Q.; Song, W. -G.; Cai, W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C2010, 114, 9865-9870.

59

Laursen, A.; Højholt, K. T.; Lundegaard, L. F.; Simonsen, S. B.; Helveg, S.; Schüth, F.; Paul, M.; Grunwaldt, J. -D.; Kegnæs, S.; Christensen, C. H.; Egeblad, K. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed.2010, 49, 3504-3507.

60

Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc.2010, 132, 8466-8473.

61

Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed.2010, 49, 4981-4985.

62

Cargnello, M.; Gentilini, C.; Montini, T.; Fonda, E.; Mehraeen, S.; Chi, M. F.; Herrera-Collado, M.; Browning, N. D.; Polizzi, S.; Pasquato, L.; Fornasiero, P. Active and stable embedded Au@CeO2 catalysts for preferential oxidation of CO. Chem. Mater.2010, 22, 4335-4345.

63
Liu, X. Y.; Wang, A. Q.; Zhang, T.; Su, D. -S.; Mou, C. -Y. Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu ratios. Catal. Today2010, in press, DOI: 10.1016/j.cattod.2010.1005.1019.https://doi.org/10.1016/j.cattod.2010.05.019
64

Zhu, H. G.; Lee, B.; Dai, S.; Overbury, S. H. Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir2003, 19, 3974-3980.

65

Yan, W. F.; Chen, B.; Mahurin, S. M.; Dai, S.; Overbury, S. H. Brookite-supported highly stable gold catalytic system for CO oxidation. Chem. Commun.2004, 1918-1919.

66

Yan, W. F.; Chen, B.; Mahurin, S. M.; Hagaman, E. W.; Dai, S.; Overbury, S. H. Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B2004, 108, 2793-2796.

67

Zhu, H. G.; Pan, Z. W.; Chen, B.; Lee, B.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts. J. Phys. Chem. B2004, 108, 20038-20044.

68

Lee, B.; Zhu, H. G.; Zhang, Z. T.; Overbury, S. H.; Dai, S. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method. Micropor. Mesopor. Mater.2004, 70, 71-80.

69

Yan, W. F.; Petkov, V.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catal. Commun.2005, 6, 404-408.

70

Yan, W. F.; Chen, B.; Mahurin, S. M.; Schwartz, V.; Mullins, D. R.; Lupini, A. R.; Pennycook, S. J.; Dai, S.; Overbury, S. H. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B2005, 109, 10676-10685.

71

Yan, W. F.; Mahurin, S. M.; Pan, Z. W.; Overbury, S. H.; Dai, S. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. J. Am. Chem. Soc.2005, 127, 10480-10481.

72

Yan, W. F.; Mahurin, S. M.; Chen, B.; Overbury, S. H.; Dai, S. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. J. Phys. Chem. B2005, 109, 15489-15496.

73

Yan, W. F.; Brown, S.; Pan, Z. W.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew. Chem. Int. Ed.2006, 45, 3614-3618.

74

Yan, W. F.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Nanoengineering catalyst supports via layer-by-layer surface functionalization. Top. Catal.2006, 39, 199-212.

75

Zhu, H. G.; Liang, C. D.; Yan, W. F.; Overbury, S. H.; Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B2006, 110, 10842-10848.

76

Zhu, H. G.; Ma, Z.; Clark, J. C.; Pan, Z. W.; Overbury, S. H.; Dai, S. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Appl. Catal. A2007, 326, 89-99.

77

Zhu, H. G.; Ma, Z.; Overbury, S. H.; Dai, S. Rational design of gold catalysts with enhanced thermal stability: Post modification of Au/TiO2 by amorphous SiO2 decoration. Catal. Lett.2007, 116, 128-135.

78

Ma, Z.; Overbury, S. H.; Dai, S. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives. J. Mol. Catal. A2007, 273, 186-197.

79

Ma, Z.; Brown, S.; Overbury, S. H.; Dai, S. Au/PO43-/TiO2 and PO43-/Au/TiO2 catalysts for CO Oxidation: Effect of synthesis details on catalytic performance. Appl. Catal. A2007, 327, 226-237.

80

Ma, Z.; Liang, C. D.; Overbury, S. H.; Dai, S. Gold nanoparticles on electroless-deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation. J. Catal.2007, 252, 119-126.

81

Yan, W. F.; Chen, B.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Gold supported on microporous aluminophosphate AlPO4-H1 for selective oxidation of CO in a H2-rich stream. Stud. Surf. Sci. Catal.2007, 170, 1065-1071.

82

Yan, W. F.; Ma, Z.; Mahurin, S. M.; Jiao, J.; Hagaman, E. W.; Overbury, S. H.; Dai, S. Novel Au/TiO2/Al2O3·xH2O catalysts for CO oxidation. Catal. Lett.2008, 121, 209-218.

83

Ma, Z.; Zhu, H. G.; Yan, W. F.; Overbury, S. H.; Dai, S. Functionalized mesoporous materials for gold catalysis. In Nanoporous Materials: Proceedings of the 5th International Symposium; Sayari, A.; Jaroniec, M., eds.; World Scientific Publishing, Singapore, 2008; pp. 529-542.

84

Ma, Z.; Brown, S.; Howe, J. Y.; Overbury, S. H.; Dai, S. Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition. J. Phys. Chem. C2008, 112, 9448-9457.

85

Yin, H. F.; Ma, Z.; Overbury, S. H.; Dai, S. Promotion of Au(en)2Cl3-derived Au/fumed SiO2 by treatment with KMnO4. J. Phys. Chem. C2008, 112, 8349-8358.

86

Ma, Z.; Yin, H. F.; Overbury, S. H.; Dai, S. Metal phosphates as a new class of supports for gold nanocatalysts. Catal. Lett.2008, 126, 20-30.

87

Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S. H.; Dai, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun.2008, 4357-4359.

88

Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D. R.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. Chem. Phys. Chem.2008, 9, 2475-2479.

89

Ma, Z.; Overbury, S. H.; Dai, S. Gold nanoparticles as chemical catalysts. In Nanomaterials: Inorganic and Bioinorganic Perspectives; Lukehart, C. M.; Scott, R. A. eds.; John Wiley & Sons, Chichester, 2009; pp. 247-266.

90

Zhou, S. H.; Ma, Z.; Yin, H. F.; Wu, Z. L.; Eichhorn, B.; Overbury, S. H.; Dai, S. Low-temperature solution-phase synthesis of NiAu alloy nanoparticles via butyllithium reduction: Influence of synthesis details and application as the precursor to active Au-NiO/SiO2 catalysts through proper pretreatment. J. Phys. Chem. C2009, 113, 5758-5765.

91

Lee, B.; Ma, Z.; Zhang, Z.; Park, C.; Dai, S. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Micropor. Mesopor. Mater.2009, 122, 160-167.

92

Ma, Z.; Yin, H. F.; Dai, S. Performance of Au/MxOy/TiO2 catalysts in water-gas shift reaction. Catal. Lett.2010, 136, 83-91.

93

Yin, H. F.; Ma, Z.; Chi, M. F.; Dai, S. Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4. Catal. Lett.2010, 136, 209-221.

94

Ma, Z.; Yin, H. F.; Dai, S. Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation. Catal. Lett.2010, 40-45.

95
Yin, H. F.; Ma, Z.; Chi, M. F.; Dai, S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation. Catal. Today2010, in press, DOI: 10.1016/j/cattod.2010.1005.1013.https://doi.org/10.1016/j.cattod.2010.05.013
96

Bokhimi, X.; Zanella, R. Crystallite size and morphology of the phases in Au/TiO2 and Au/Ce-TiO2 catalysts. J. Phys. Chem. C2007, 111, 2525-2532.

97

Comotti, M.; Weidenthaler, C.; Li, W. -C.; Schüth, F. Comparison of gold supported catalysts obtained by using different allotropic forms of titanium dioxide. Top. Catal.2007, 44, 275-284.

98

Su, F. -Z.; Chen, M.; Wang, L. -C.; Huang, X. -S.; Liu, Y. -M.; Cao, Y.; He, H. Y.; Fan, K. -N. Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. Chem. Commun.2008, 1027-1032.

99

Huang, J.; Dai, W. L.; Fan, K. N. Support effect of Au/FeOx catalysts in the oxidative dehydrogenation of α, γ-diols to lactones. J. Catal.2008, 112, 16110-16117.

100

Huang, J.; Dai, W. L.; Fan, K. N. Remarkable support crystal phase effect in Au/FeOx catalyzed oxidation of 1, 4-butanediol to γ-butyrolactone. J. Catal.2009, 266, 228-235.

101

Pietron, J. J.; Stroud, R. M.; Rolison, D. R. Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett.2002, 2, 545-549.

102

Rolison, D. R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science2003, 299, 1698-1701.

103

Carrettin, S.; Concepción, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed.2004, 43, 2538-2540.

104

Guzman, J.; Corma, A. Nanocrystalline and mesostructured Y2O3 as supports for gold catalysts. Chem. Commun.2005, 743-745.

105

Zhang, X.; Wang, H.; Xu, B. Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B2005, 109, 9678-9683.

106

Bokhimi, X.; Zanella, R.; Morales, A. Au/rutile catalysts: Effect of support dimensions on the gold crystallite size and the catalytic activity for CO oxidation. J. Phys. Chem. C2007, 111, 15210-15216.

107

Li, J.; Ta, N.; Song, W.; Zhan, E. S.; Shen, W. J. Au/ZrO2 catalysts for low-temperature water gas shift reaction: Influence of particle sizes. Gold Bull.2009, 42, 48-60.

108

Wang, G. -H.; Li, W. -C.; Jia, K. -M.; Spliethoff, B.; Schüth, F.; Lu, A. -H. Shape and size controlled α-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance. Appl. Catal. A2009, 364, 42-47.

109

Han, Y. -F.; Zhong, Z. Y.; Ramesh, K.; Chen, F.; Chen, L. Effects of different types of γ-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures. J. Phys. Chem. C2007, 111, 3163-3170.

110

Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed.2008, 47, 2884-2887.

111

Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. -Y.; Fan, K. -N. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J. Phys. Chem. C2008, 112, 1027-1032.

112

Yi, G. Q.; Xu, Z. N.; Guo, G. C.; Tanaka, K.; Yuan, Y. Z. Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst. Chem. Phys. Lett.2009, 479, 128-132.

113

Huang, X. -S.; Sun, H.; Wang, L. -C.; Liu, Y. -M.; Fan, K. -N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B2009, 90, 224-232.

114
Yi, G. Q.; Yang, H. W.; Li, B. D.; Lin, H. Q.; Tanaka, K.; Yuan, Y. Z. Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect. Catal. Today2010, in press, DOI: 10.1016/j.cattod.2010.1001.1049.https://doi.org/10.1016/j.cattod.2010.01.049
115

Lin, S. D.; Bollinger, M.; Vannice, M. A. Low-temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett.1993, 17, 245-262.

116

Overbury, S. H.; Ortiz-Soto, L.; Zhu, H. G.; Lee, B.; Amiridis, M. D.; Dai, S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions. Catal. Lett.2004, 95, 99-106.

117

Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal.2001, 197, 113-122.

118

Lee, S. -J.; Gavriilidis, A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation. J. Catal.2002, 206, 305-313.

119

Wen, L.; Fu, J. -K.; Gu, P. -Y.; Yao, B. -X.; Lin, Z. -H.; Zhou, J. -Z. Monodispersed gold nanoparticles supported on γ-Al2O3 for enhancement of low-temperature catalytic oxidation of CO. Appl. Catal. B2008, 79, 402-409.

120

Okumura, M.; Tsubota, S.; Iwamoto, M.; Haruta, M. Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem. Lett.1998, 315-316.

121

Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett.1998, 51, 53-58.

122

Okumura, M.; Tsubota, S.; Haruta, M. Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A2003, 199, 73-84.

123

Yang, C. -M.; Kalwei, M.; Schüth, F.; Chao, K. -J. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Appl. Catal. A2003, 254, 289-296.

124

Chi, Y. -S.; Lin, H. -P.; Mou, C. -Y. CO oxidation over gold nanocatalyst confined in mesoporous silica. Appl. Catal. A2005, 284, 199-206.

125

Budroni, G., Corma, A. Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew. Chem. Int. Ed.2006, 45, 3328-3331.

126

Guillemot, D.; Polisset-Thfoin, M.; Fraissard, J. Preparation of nanometeric gold particles on NaHY. Catal. Lett.1996, 41, 143-148.

127

Bulushev, D. A.; Yuranov, I.; Suvorova, E. I.; Buffat, P. A.; Kiwi-Minsker, L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J. Catal.2004, 224, 8-17.

128

Zhu, L. H.; Letaief, S.; Liu, Y.; Gervais, F.; Detellier, C. Clay-mineral-supported gold nanoparticles. Appl. Clay. Sci.2009, 43, 439-446.

129

Zanella, R.; Sandoval, A.; Santiago, P.; Basiuk, V. A.; Saniger, J. M. New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B2006, 110, 8559-8565.

130

Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation. Chem. Commun.2008, 3308-3310.

131

Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: Nature and role of different Au species. J. Phys. Chem. C2009, 113, 3726-3734.

132

Yin, H. F.; Ma, Z.; Zhu, H. G.; Chi, M. F.; Dai, S. Evidence for and mitigation of the encapsulation of gold nanoparticles within SiO2 matrix upon calcining Au/SiO2 catalysts at high temperatures: implication to catalyst deactivation. Appl. Catal. A2010, 386, 147-156.

133

Venugopal, A.; Scurrell, M. S. Hydroxyapatite as a novel support for gold and ruthenium catalysts: Behaviour in the water gas shift reaction. Appl. Catal. A2003, 245, 137-147.

134

Lian, H. L.; Jia, M. J.; Pan, W. C.; Li, Y.; Zhang, W. X.; Jiang, D. Z. Gold-base catalysts supported on carbonate for low-temperature CO oxidation. Catal. Commun.2005, 6, 47-51.

135

Phonthammachai, N.; Zhong, Z. Y.; Guo, J.; Han, Y. F.; White, T. J. Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidation. Gold Bull.2008, 41, 42-50.

136

Han, Y. -F.; Phonthammachai, N.; Ramesh, K.; Zhong, Z. Y.; White, T. Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts. Ind. Eng. Chem. Res.2008, 42, 908-912.

137

Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res.2008, 1, 46-55.

138

Sun, H.; Su, F. -Z.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes. Angew. Chem. Int. Ed.2009, 48, 4390-4393.

139

Domínguez, M. I.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A. Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation. Appl. Catal. B2009, 87, 245-251.

140

Karimi, B.; Esfahani, F. K. Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature. Chem. Commun.2009, 5555-5557.

141

Mitsudome, T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst. Adv. Synth. Catal.2009, 351, 1890-1896.

142

Park, Y.; Lee, B.; Kim, C.; Kim, J.; Nam, S.; Oh, Y.; Park, B. Modification of gold catalysis with aluminum phosphate for oxygen-reduction reaction. J. Phys. Chem. C2010, 114, 3688-3692.

143

Liu, Y. M.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun.2010, 46, 550-552.

144

Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported gold and silver nanoparticles for catalytic deoxygenation of epoxide into alkenes. Angew. Chem. Int. Ed.2010, 49, 5545-5548.

145

Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Elsevier: Amsterdam, 1989.

146

Li, M. J.; Wu, Z. L.; Ma, Z.; Schwartz, V.; Mullins, D. R.; Dai, S.; Overbury, S. H. CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites. J. Catal.2009, 266, 98-105.

147

Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc.2005, 127, 3286-3287.

148

Guzman, J.; Carrettin, S.; Fierro-Gonzalez, J. C.; Hao, Y. L.; Gates, B. C.; Corma, A. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed.2005, 44, 4778-4781.

149

Ma, Z.; Zaera, F. Heterogeneous Catalysis by Metals. In Encyclopedia of Inorganic Chemistry (Second Edition); King, R. B., ed.; John Wiley & Sons: Chichester, 2005; pp. 1768-1784.

150

Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.; Datye, A. K. Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica. Micropor. Mesopor. Mater.2006, 95, 118-125.

151

Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijn, J. A. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind. Eng. Chem. Res.1999, 38, 884-891.

152

Stangland, E. E.; Stavens, K. B.; Andres, R. P.; Delgass, W. N. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J. Catal.2000, 191, 332-347.

153

Qi, C. X.; Akita, T.; Okumura, M.; Haruta, M. Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl. Catal. A2001, 218, 81-89.

154

Tai, Y.; Murakami, J.; Tajiri, K.; Ohashi, F.; Daté, M.; Tsubota, S. Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels. Appl. Catal. A2004, 268, 183-187.

155

Venezia, A. M.; Liotta, F. L.; Pantaleo, G.; Beck, A.; Horvath, A.; Geszti, O.; Kocsonya, A.; Guczi, L. Effect of Ti(IV) loading on CO oxidation activity of gold on TiO2 doped amorphous silica. Appl. Catal. A2006, 310, 114-121.

156

Bandyopadhyay, M.; Korsak, O.; van den Berg, M. W. E.; Grunert, W.; Birkner, A.; Li, W.; Schüth, F.; Gies, H. Gold nano-particles stabilized in mesoporous MCM-48 as active CO-oxidation catalyst. Micropor. Mesopor. Mater.2006, 89, 158-163.

157

Xu, L. -X.; He, C. -H.; Zhu, M. -Q.; Wu, K. -J.; Lai, Y. -L. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catal. Lett.2007, 118, 248-253.

158

Ruszel, M.; Grzybowska, B.; Łaniecki, M.; Wójtowski, M. Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation. Catal. Commun.2007, 8, 1284-1286.

159

Beck, A.; Horváth, A.; Stefler, G.; Katona, R.; Geszti, O.; Tolnai, G.; Liotta, L. F.; Guczi, L. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today2008, 139, 180-187.

160

Tai, Y.; Tajiri, K. Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl. Catal. A2008, 342, 113-118.

161

Tai, Y.; Yamaguchi, W.; Tajiri, K.; Kageyama, H. Structures and CO oxidation activities of size-selected Au nanoparticles in mesoporous titania-coated silica aerogels. Appl. Catal. A2009, 364, 143-149.

162

Beck, A.; Horváth, A.; Stefler, G.; Scurrel, M. S.; Guczi, L. Role of preparation techniques in the activity of Au/TiO2 nanostructures stabilised on SiO2: CO and preferential CO oxidation. Top. Catal.2009, 52, 912-919.

163

Narkhede, V. S.; De Toni, A.; Narkhede, V. V.; Guraya, M.; Niemantsverdriet, J. W.; van den Berg, M. W. E.; Grünert, W.; Gies, H. Au/TiO2 catalysts encapsulated in the mesopores of siliceous MCM-48—Reproducible synthesis, structural characterization and activity for CO oxidation. Micropor. Mesopor. Mater.2009, 118, 52-60.

164

Lim, S. H.; Phonthammachai, N.; Zhong, Z. Y.; Teo, J.; White, T. J. Robust gold-decorated silica-titania pebbles for low-temperature CO catalytic oxidation. Langmuir2009, 25, 9480-9486.

165

Peza-Ledesma, C. L.; Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Fierro, J. L. G. Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide. Appl. Catal. A2010, 375, 37-48.

166

Moreau, F.; Bond, G. C. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal. Today2006, 114, 362-368.

167

Xu, H. Y.; Chu, W.; Luo, J. J.; Liu, M. New Au/FeOx/SiO2 catalysts using deposition-precipitation for low-temperature carbon monoxide oxidation. Catal. Commun.2010, 11, 812-815.

168

Dekkers, M. A. P.; Lippits, M. J.; Nieuwenhuys, B. E., Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions. Catal. Today1999, 54, 381-390.

169

Xu, X. Y.; Li, J. J.; Hao, Z. P.; Zhao, W.; Hu, C. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. Mater. Res. Bull.2006, 41, 406-413.

170

Qian, K.; Huang, W. X.; Jiang, Z. Q.; Sun, H. X. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J. Catal.2007, 248, 137-141.

171

Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. Understanding the deposition-precipitation process for the preparation of supported Au catalysts. J. Mol. Catal. A2010, 320, 97-105.

172

Qian, K.; Huang, W. X.; Fang, J.; Lv, S. S.; He, B.; Jiang, Z. Q.; Wei, S. Q. Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. J. Catal.2008, 255, 269-278.

173

Qian, K.; Lv, S. S.; Xiao, X. Y.; Sun, H. X.; Lu, J. Q.; Luo, M. F.; Huang, W. X. Influence of CeO2 nicrostructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation. J. Mol. Catal. A2009, 306, 40-47.

174

Hernandez, J. A.; Gómez, S.; Pawelec, B.; Zepeda, T. A. CO oxidation on Au nanoparticles supported on wormhole HMS material: Effect of support modification with CeO2. Appl. Catal. B2009, 89, 128-136.

175

Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Rosmaninho, M. G.; Peza-Ledesma, C. L.; Fierro, J. L. G. SBA-15-supported gold nanoparticles decorated by CeO2: Structural characteristics and CO oxidation activity. Appl. Catal. A2010, 381, 42-53.

176

Veith, G. M.; Lupini, A. R.; Rashkeev, S.; Pennycook, S. J.; Mullins, D. R.; Schwartz, V.; Bridges, C. A.; Dudney, N. J. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal.2009, 262, 92-101.

177

Chang, L. -H.; Chen, Y. -W.; Sasirekha, N. Preferential oxidation of carbon monoxide in hydrogen stream over Au/MgOx-TiO2 catalysts. Ind. Eng. Chem. Res.2008, 47, 4098-4105.

178

Chang, L. -H.; Sasirekha, N.; Chen, Y. -W.; Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream. Catal. Commun.2007, 8, 1702-1710.

179

Shou, M.; Takekawa, H.; Ju, D. -Y.; Hagiwara, T.; Lu, D. -L.; Tanaka, K. Activation of a Au/TiO2 catalyst by loading a large amount of Fe-oxide: Oxidation of CO enhanced by H2 and H2O. Catal. Lett.2006, 108, 119-124.

180

Chang, F. -W.; Yu, H. -Y.; Roselin, L. S.; Yang, H. -C.; Ou, T. -C. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides. Appl. Catal. A2006, 302, 157-167.

181

Sangeetha, P.; Zhao, B.; Chen, Y. -W. Au/CuOx-TiO2 catalysts for preferential oxidation of CO in hydrogen stream. Ind. Eng. Chem. Res.2010, 49, 2096-2102.

182

Mallick, K.; Scurrell, M. S. CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: Catalytic activity effects due to surface modification of TiO2 with ZnO. Appl. Catal. A2003, 253, 527-536.

183

Sangeetha, P.; Chen, Y. -W. Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts. Int. J. Hydrogen Energ.2009, 34, 7342-7347.

184

Park, J. B.; Graciani, J.; Evans, J.; Stacchiola, D.; Ma, S. G.; Liu, P.; Nambu, A.; Sanz, J. F.; Hrbek, J.; Rodrigues, J. A. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc. Natl. Acad. Sci. USA2009, 106, 4975-4980.

185

Xie, Y. C.; Tang, Y. Q. Spontaneous monolayer dispersion of oxides and salts. Adv. Catal.1990, 37, 1-43.

186

Wang, C. -M.; Fan, K. -N.; Liu, Z. -P. Insight into the synergetic effect in ternary gold-based catalysts: Ultrastability and high activity of Au on alumina modified titania. J. Phys. Chem. C2007, 111, 13539-13546.

187
Shang, C.; Liu, Z. -P. Is transition metal oxide a must? Moisture-assisted oxygen activation in CO oxidation on gold/γ-alumina. J. Phys. Chem. C2010, in press, DOI: 10.1021/jp102477g.https://doi.org/10.1021/jp102477g
188

Hagaman, E. W.; Jiao, J.; Chen, B. H.; Ma, Z.; Yin, H. F. L.; Dai, S. Surface alumina species on modified titanium oxide. A solid-state 27Al MAS and 3QMAS NMR investigation of catalyst supports. Solid State NMR2010, 37, 82-90.

189

Grisel, R. J. H.; Nieuwenhuys, B. E. Selective oxidation of CO over supported Au catalysts. J. Catal.2001, 199, 48-59.

190

Szabó, E. G.; Hegedűs, M.; Szegedi, Á.; Sajó, I.; Margitfalvi, J. L. CO oxidation over Au/Al2O3 catalysts modified by MgO. React. Kinet. Catal. Lett.2005, 86, 339-345.

191

Szabó, E. G.; Hegedűs, M.; Lónyi, F.; Szegedi, Á.; Datye, A. K.; Margitfalvi, J. L. Preparation, characterization and activity of Au/Al2O3 modified by MgO. Catal. Commun.2009, 10, 889-893.

192

Grisel, R. J. H.; Nieuwenhuys, B. E. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal. Today2001, 64, 69-81.

193

Wang, D. H.; Hao, Z. P.; Cheng, D. Y.; Shi, X. C.; Hu, C. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts. J. Mol. Catal. A2003, 200, 229-238.

194

Szabó, E. G.; Hegedűs, M.; Margitfalvi, J. L. The role of the nano-environment of supported gold catalysts in the activity control. Modification of Au/Al2O3 catalysts by redox-type metal oxides. React. Kinet. Catal. Lett.2008, 93, 119-125.

195

Wang, D. H.; Hao, Z. P.; Cheng, D. Y.; Shi, X. C. Influence of the calcination temperature on the Au/FeOx/Al2O3 catalyst. J. Chem. Technol. Biotechnol.2006, 1246-1251.

196

Wang, F.; Lu, G. X. Control reaction path of CO oxidation by regulating the oxidation state of Au species. Catal. Lett.2010, 134, 72-77.

197

Gluhoi, A. C.; Nieuwenhuys, B. E. Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts: Effect of various promoters. Catal. Today2007, 119, 305-310.

198

Somodi, F.; Borbáth, I.; Hegedűs, M.; Lázár, K.; Sajó, I.; Geszti, O.; Rojas, S.; Fierro, J. L. G.; Margitfalvi, J. L. Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation. Appl. Surf. Sci.2009, 256, 726-736.

199

Hereijgers, B. P. C.; Weckhuysen, B. M. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. Chem. Suc. Chem.2009, 2, 743-748.

200

Centeno, M. A.; Paulis, M.; Montes, M.; Odriozola, J. A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl. Catal. A2002, 234, 65-78.

201

Centeno, M. A.; Portales, C.; Carrizosa, I.; Odriozola, J. A. Gold supported CeO2/Al2O3 catalysts for CO oxidation: Influence of the ceria phase. Catal. Lett.2005, 102, 289-297.

202

Lakshmanan, P.; Delannoy, L.; Richard, V.; Méthivier, C.; Potvin, C.; Louis, C. Total oxidation of propene over Au/xCeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment. Appl. Catal. B2010, 96, 117-125.

203

Yuan, Q.; Duan, H. -H.; Li, L. -L.; Li, Z. -X.; Duan, W. -T.; Zhang, L. -S.; Song, W. -G.; Yan, C. -H. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina. Angew. Chem. Int. Ed.2010, 22, 1475-1478.

204

Gluhoi, A. C.; Tang, X.; Marginean, P.; Nieuwenhuys, B. E. Characterization and catalytic activity of unpromoted and alkali (earth)-promoted Au/Al2O3 catalysts for low-temperature CO oxidation. Top. Catal.2006, 39, 101-110.

205

Gluhoi, A. C.; Nieuwenhuys, B. E. Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold. Catal. Today2007, 122, 226-232.

206

Prati, L.; Martra, G. New gold catalysts for liquid phase oxidation. Gold Bull.1999, 32, 96-101.

207

Ketchie, W. C.; Fang, Y. -L.; Wong, M. S.; Murayama, M.; Davis, R. J. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal.2007, 250, 95-102.

208

Huang, X. K.; Yue, H. J.; Attia, A.; Yang, Y. Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black. J. Electrochem. Soc.2007, 154, A26-A33.

209

Hammer, N.; Kvande, I.; Chen, D.; Rønning, M. Au-TiO2 catalysts stabilised by carbon nanofibres. Catal. Today2007, 122, 365-369.

210

Hammer, N.; Kvande, I.; Xu, X.; Gunnarsson, V.; Totdal, B.; Chen, D.; Rønning, M. Au-TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catal. Today2007, 123, 245-256.

211

George, P. P.; Gedanken, A.; Perkas, N.; Zhong, Z. Y. Selective oxidation of CO in the presence of air over gold-based catalysts Au/TiO2/C (sonochemistry) and Au/TiO2/C (microwave). Ultrason. Sonochem.2007, 15, 539-547.

212

Bulushev, D. A.; Kiwi-Minsker, L.; Yuranov, I.; Suvorova, E. I.; Buffat, P. A.; Renken, A. Structured Au/FeOx/C catalysts for low-temperature CO oxidation. J. Catal.2002, 210, 149-159.

213

Khanderi, J.; Hoffmann, R. C.; Engstler, J.; Schneider, J. J.; Arras, J.; Claus, P.; Cherkashinin, G. Binary Au/MWCNT and ternary Au/ZnO/MWCNT nanocomposites: Synthesis, characterization and catalytic performance. Chem. Eur. J.2010, 16, 2300-2308.

214

Solsona, B.; Conte, M.; Cong, Y.; Carley, A.; Hutchings, G. Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. Chem. Commun.2005, 2351-2353.

215

Kanazawa, T. Suppression of Pt sintering on MFI zeolite by modification with tetramethoxysilane. Catal. Lett.2006, 108, 45-47.

216

Takenaka, S.; Matsumori, H.; Nakagawa, K.; Matsune, H.; Tanabe, E.; Kishida, M. Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J. Phys. Chem. C2007, 111, 15133-15136.

217

Takenaka, S.; Arike, T.; Matsune, H.; Tanabe, E.; Kishida, M. Preparation of carbon nanotube-supported metal nanoparticles coated with silica layers. J. Catal.2008, 257, 345-355.

218

Nakagawa, K.; Tanimoto, Y.; Okayama, T.; Sotowa, K. -I.; Sugiyama, S.; Takenaka, S.; Kishida, M. Sintering resistance and catalytic activity of platinum nanoparticles covered with a microporous silica layer using methyltriethoxysilane. Catal. Lett.2010, 136, 71-76.

219

Zhang, P.; Chi, M. F.; Sharma, S.; McFarland, E. W. Silica encapsulated heterostructure catalyst of Pt nanoclusters on hematite nanocubes: synthesis and reactivity. J. Mater. Chem.2010, 20, 2013-2017.

220

Rashkeev, S. N.; Dai, S.; Overbury, S. H. Modification of Au/TiO2 nanosystems by SiO2 monolayers: Toward the control of the catalyst activity and stability. J. Phys. Chem. C2010, 114, 2996-3002.

221

Guczi, L.; Frey, K.; Beck, A.; Petõ, B.; Daróczi, C. S.; Kruse, N.; Chenakin, S. Iron oxide overlayers on Au/SiO2/Si(100): Promoting effect of Au on the catalytic activity of iron oxide in CO oxidation. Appl. Catal. A2005, 291, 116-125.

222

Guczi, L.; Pászti, Z.; Frey, K.; Beck, A.; Pető, G.; Daróczy, C. S. Modeling gold/iron oxide interface system. Top. Catal.2006, 39, 137-143.

223

Dong, X. P.; Shen, W. H.; Zhu, Y. F.; Xiong, L. M.; Gu, J. L.; Shi, J. L. Investigation on Mn-loaded mesoporous silica MCM-41 prepared via reducing KMnO4 with in situ surfactant. Micropor. Mesopor. Mater.2005, 81, 235-240.

224

Dong, X. P.; Shen, W. H.; Zhu, Y. F.; Xiong, L. M.; Shi, J. L. Facile synthesis of manganese-loaded mesoporous silica materials by direct reaction between KMnO4 and an in-situ surfactant template. Adv. Funct. Mater.2005, 15, 955-960.

225

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett.2005, 5, 379-382.

226

Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H. Recent progress in synthesis and applications of dumbbell-like nanoparticles. Adv. Mater.2009, 21, 3045-3052.

227

Lee, Y.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4. Angew. Chem. Int. Ed.2010, 49, 1271-1274.

228

Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science2006, 311, 362-365.

229

Bracey, C. L.; Ellis, P. R.; Hutchings, G. J. Application of copper-gold alloys in catalysis: Current status and future perspectives. Chem. Soc. Rev.2009, 38, 2231-2243.

230

Keane, M. A.; Gómez-Quero, S.; Cárdenas-Lizana, F.; Shen, W. Q. Alumina-supported Ni-Au: Surface synergistic effects in catalytic hydrodechlorination. Chem. Cat. Chem.2009, 1, 270-278.

231

Wong, M. S.; Alvarez, P. J. J.; Fang, Y. -L.; Akçin, N.; Nutt, M. O.; Miller, J. T.; Heck, K. N. Cleaner water using bimetallic nanoparticle catalysts. J. Chem. Technol. Biotechnol.2009, 84, 158-166.

232

Chen, Y. T.; Lim, H. M.; Tang, Q. H.; Gao, Y. T.; Sun, T.; Yan, Q. Y.; Yang, Y. H. Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au-Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl. Catal. A2010, 380, 55-65.

233

Ye, Q.; Wang, J.; Zhao, J. S.; Yan, L. N.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Pt or Pd-doped Au/SnO2 catalysts: High activity for low-temperature CO oxidation. Catal. Lett.2010, 138, 56-61.

234
Yu, Q. Q.; Chen, W.; Li, Y.; Jin, M. S.; Suo, Z. H. The action of Pt in bimetallic Au-Pt/CeO2 catalyst for water-gas shift reaction. Catal Today2010, in press, DOI: 10.1016/j.cattod.2010.1004.1005.https://doi.org/10.1016/j.cattod.2010.04.005
235

Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. J. Am. Chem. Soc.2005, 127, 1380-1381.

236

Liu, J. -H.; Wang, A. -Q.; Chi, Y. -S.; Lin, H. -P.; Mou, C. -Y. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B2005, 109, 40-43.

237

Wang, A. -Q.; Liu, J. -H.; Lin, S. D.; Lin, T. -S.; Mou, C. -Y. A novel efficient Au-Ag alloy catalyst system: Preparation, activity, and characterization. J. Catal.2005, 233, 186-197.

238

Wang, A. Q.; Chang, C. M.; Mou, C. Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B2005, 109, 18860-18867.

239

Wang, A. Q.; Hsieh, Y. -P.; Chen, Y. -F.; Mou, C. -Y. Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal.2006, 237, 197-206.

240

Liu, X. Y.; Wang, A. Q.; Wang, X. D.; Mou, C. Y.; Zhang, T. Au-Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun.2008, 3187-3189.

241

Baiker, A.; Gasser, D.; Lenzner, J.; Reller, A.; Schlögl, R. Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy. 1. Bulk structural, morphological, and catalytic properties of catalyst. J. Catal.1990, 126, 555-571.

242

Schlögl, R.; Loose, G.; Wesemann, M.; Baiker, A. Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy. 2. The nature of the active surface. J. Catal.1992, 137, 139-157.

243

Baiker, A.; Maciejewski, M.; Tagliaferri, S.; Hug, P. Carbon monoxide oxidation over catalysts prepared by in situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys. J. Catal.1995, 151, 407-419.

244

Dawood, F.; Leonard, B. M.; Schaak, R. E. Oxidative transformation of intermetallic nanoparticles: An alternative pathway to metal/oxide nanocomposites, textured ceramics, and nanocrystalline multimetal oxides. Chem. Mater.2007, 19, 4545-4550.

245

Albonetti, S.; Bonelli, R.; Mengou, J. E.; Femoni, C.; Tiozzo, C.; Zacchini, S.; Trifirò, F. Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catal. Today2008, 137, 483-488.

246

Albonetti, S.; Bonelli, R.; Delaigle, R.; Femoni, C.; Gaigneaux, E. M.; Morandi, V.; Ortolani, L.; Tiozzo, C.; Zacchini, S.; Trifirò, F. Catalytic combustion of toluene over cluster-derived gold/iron catalysts. Appl. Catal. A2010, 372, 138-146.

247

Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir1996, 12, 4329-4335.

248

Liz-Marzan, L. M.; Mulvaney, P. The assembly of coated nanocrystals. J. Phys. Chem. B2003, 107, 7312-7326.

249

Botella, P.; Corma, A.; Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater.2007, 19, 1979-1983.

250

Casavola, M.; Buonsanti, R.; Caputo, G.; Cozzoli, P. D. Colloidal strategies for preparing oxide-based hybride nanocrystals. Eur. J. Inorg. Chem.2008, 837-854.

251

Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core-hollow shell nanoparticles. Adv. Mater.2008, 20, 4323-4329.

252

Joo, S. H.; Park, J. Y.; Tsung, C. -K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater.2009, 8, 126-131.

253

Liu, S. H.; Han, M. Y. Silica-coated metal nanoparticles. Chem. Asian J.2010, 5, 36-45.

254

Ikeda, M.; Tago, T.; Kishida, M.; Wakabayashi, K. Thermal stability of an SiO2-coated Rh catalyst and catalytic activity in NO reduction by CO. Chem. Commun.2001, 2512-2513.

255

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science2004, 304, 711-714.

256

Takenaka, S.; Hori, K.; Matsune, H.; Kishida, M. Control of selectivity based on the diffusion rates of the reactants in the oxidation of mixed hydrocarbons with molecular oxygen over silica-coated Pt catalysts. Chem. Lett.2005, 34, 1594-1595.

257

Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C. Engineering Pt in ceria for a maximum metal-support interaction in catalysis. J. Am. Chem. Soc.2005, 127, 18010-18011.

258

Yeung, C. M. Y.; Meunier, F.; Burch, R.; Thompsett, D.; Tsang, S. C. Comparison of new microemulsion prepared "Pt-in-Ceria" catalyst with conventional "Pt-on-Ceria" catalyst for water-gas shift reaction. J. Phys. Chem. B2006, 110, 8540-8543.

259

Takenaka, S.; Umebayashi, H.; Tanabe, E.; Matsune, H.; Kishida, M. Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas. J. Catal.2007, 245, 392-400.

260

Park, J. N.; Forman, A. J.; Tang, W.; Cheng, J. H.; Hu, Y. -S.; Lin, H. F.; McFarland, E. W. Highly active and sinter-resistant Pd nanoparticle catalysts encapsulated in silica. Small2008, 4, 1694-1697.

261
Yao, L. H.; Li, Y. X.; Zhao, J.; Ji, W. J.; Au, C. T. Core-shell structured nanoparticles (M@SiO2, Al2O3, MgO; M = Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition. Catal. Today, in press, DOI: 10.1016/j.cattod.2010.1005.1009.
262

Yu, K. M. K.; Yeung, C. M. Y.; Thompsett, D.; Tsang, S. C. Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts. J. Phys. Chem. B2003, 107, 4515-4526.

263

Yu, K. M. K.; Thompsett, D.; Tsang, S. C. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor. Chem. Commun.2003, 1522-1523.

264

Kong, T. S. A.; Yu, K. M. K.; Tsang, S. C. Silica coated noble metal nanoparticle hydrosols as supported catalyst precursors. J. Nanosci. Nanotechnol.2006, 6, 1167-1172.

265

Ma, Z.; Dai, S. Materials design of advanced performance metal catalysts. Mater. Technol.2008, 21, 81-87.

266

De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.; Montini, T.; Fornasiero, P. Embedded phases: A way to active and stable catalysts. Chem. Sus. Chem.2010, 3, 24-42.

267

Lee, J.; Park, J. C.; Bang, J. U.; Song, H. Precise tuning of porisity and surface functionality in Au@SiO2 nanoreactors for high activity efficiency. Chem. Mater.2008, 20, 5839-5844.

268

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater.2008, 20, 1523-1528.

269

Huang, X. Q.; Guo, C. Y.; Zuo, J. Q.; Zheng, N. F.; Stucky, G. D. An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small2009, 5, 361-365.

270

Güttel, R.; Paul, M.; Schüth, F. Ex-post size control of high-temperature-stable yolk-shell Au@ZrO2 catalysts. Chem. Commun.2010, 46, 895-897.

271

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano2010, 4, 529-539.

272

Li, J.; Zeng, H. C. Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew. Chem. Int. Ed.2005, 44, 4342-4345.

273

Wu, X. -F.; Song, H. -Y.; Yoon, J. -M.; Yu, Y. -T.; Chen, Y. -F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphologies and their photocatalytic properties. Langmuir2009, 25, 6438-6447.

274

Chen, Y. L.; Zhu, B. L.; Yao, M. Y.; Wang, S. R.; Zhang, S. M. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catal. Commun.2010, 11, 1003-1007.

275

Hagaman, E. W.; Zhu, H. G.; Overbury, S. H.; Dai, S. 13C NMR characterization of the organic constituents in ligand-modified hexagonal mesoporous silicas: Media for the synthesis of small, uniform-size gold nanoparticles. Langmuir2004, 20, 9577-9584.

276

Schwartz, V.; Mullins, D. R.; Yan, W. F.; Chen, B.; Dai, S.; Overbury, S. H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B2004, 108, 15782-15790.

277

Schwartz, V.; Mullins, D. R.; Yan, W. F.; Zhu, H. G.; Dai, S.; Overbury, S. H. Structural investigation of Au catalysts on TiO2-SiO2 supports: Nature of the local structure of Ti and Au atoms by EXAFS and XANES. J. Phys. Chem. C2007, 111, 17322-17332.

278

Dmowski, W.; Yin, H. F.; Dai, S.; Overbury, S. H.; Egami, T. Atomic structure of Au nanoparticles on a silica support by an X-ray PDF study. J. Phys. Chem. C2010, 114, 6983-6988.

279

Akita, T.; Okumura, M.; Tanaka, K.; Kohyama, M.; Haruta, M. Analytical TEM observation of Au nano-particles on cerium oxide. Catal. Today2006, 117, 62-68.

280

Akita, T.; Tanaka, K.; Kohyama, M.; Haruta, M. Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catal. Today2007, 122, 233-238.

281

Majimel, J.; Lamirand-Majimel, M.; Moog, I.; Feral-Martin, C.; Tréguer-Delapierre, M. Size-dependent stability of supported gold nanostructures onto ceria: An HRTEM study. J. Phys. Chem. C2009, 113, 9275-9283.

282

Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science2008, 321, 1331-1335.

283

González, J. C.; Hernández, J. C.; López-Haro, M.; del Río, E.; Delgado, J. J.; Hungría, A. B.; Trasobares, S.; Bernal, S.; Midgley, P. A.; Calvino, J. J. 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed.2009, 48, 5313-5315.

284

Allard, L. F.; Borisevich, A.; Deng, W. L.; Si, R.; Flytzani-Stephanopoulos, M.; Overbury, S. H. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc.2009, 58, 199-212.

Nano Research
Pages 3-32
Cite this article:
Ma Z, Dai S. Development of Novel Supported Gold Catalysts: A Materials Perspective. Nano Research, 2011, 4(1): 3-32. https://doi.org/10.1007/s12274-010-0025-5

832

Views

15

Downloads

170

Crossref

N/A

Web of Science

175

Scopus

17

CSCD

Altmetrics

Received: 28 June 2010
Revised: 28 July 2010
Accepted: 31 July 2010
Published: 12 October 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return