Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO2), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO2 and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.
Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science2003, 299, 1688-1691.
Kung, H. H.; Kung, M. C. Heterogeneous catalysis: What lies ahead in nanotechnology. Appl. Catal. A2003, 246, 193-196.
Somorjai, G. A.; Rioux, R. M. High technology catalysts towards 100% selectivity: Fabrication, characterization and reaction studies. Catal. Today2005, 100, 201-215.
Somorjai, G. A.; Park, J. Y. Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top. Catal.2008, 49, 126-135.
Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res.2009, 2, 1-29.
Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res.2009, 2, 30-46.
Zaera, F. The new materials science of catalysis: Toward controlling selectivity by designing the structure of the active site. J. Phys. Chem. Lett.2010, 1, 621-627.
Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science1998, 281, 1647-1650.
Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science2004, 306, 252-255.
Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed.2004, 43, 4412-4456.
Daniel, M. -C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004, 104, 293-346.
Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed.2005, 44, 7852-7872.
Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films2010, 518, 3127-3150.
Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett.1987, 405-408.
Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.1989, 115, 301-309.
Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal.1993, 144, 175-192.
Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. -Sci. Eng.1999, 41, 319-388.
Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A2001, 222, 427-437.
Choudhary, T. V.; Goodman, D. W. Oxidation catalysis by supported gold nano-clusters. Top. Catal.2002, 21, 25-34.
Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed.2006, 45, 7896-7936.
Kung, M. C.; Davis, R. J.; Kung, H. H. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C2007, 111, 11767-11775.
Carabineiro, S. A. C.; Thompson, D. T. Catalytic applications for gold nanotechnology. In Nanocatalysis; Heiz, U.; Landman, U., eds.; Springer: Berlin, 2007; pp. 377-489.
Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev.2008, 37, 2077-2095.
Corma, A.; Garcia, H. Supported gold nanoparticles for organic reactions. Chem. Soc. Rev.2008, 37, 2096-2126.
Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal.2003, 216, 425-432.
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science2003, 301, 935-938.
Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, 2006.
Chen, M. S.; Goodman, D. W. Structure-activity relationships in supported Au catalysts. Catal. Today2006, 111, 22-33.
Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal.2007, 44, 15-26.
Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev.2007, 107, 2709-2724.
Fierro-Gonzalez, J. C.; Gates, B. C. Catalysis by gold dispersed on supports: The importance of cationic gold. Chem. Soc. Rev.2008, 37, 2127-2134.
Gong, J. L.; Mullins, C. B. Surface science investigation of oxidative chemistry on gold. Acc. Chem. Res.2009, 42, 1063-1073.
Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett.1997, 44, 83-87.
Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B2002, 106, 7634-7642.
Wolf, A.; Schüth, F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A2002, 226, 1-13.
Moreau, F.; Bond, G. C.; Taylor, A. O. Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents. J. Catal.2005, 231, 105-114.
Li, W. C.; Comotti, M.; Schüth, F. Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J. Catal.2006, 237, 190-196.
Moreau, F.; Bond, G. C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Appl. Catal. A2006, 302, 110-117.
Al-Sayari, S.; Carley, A. F.; Taylor, S. H.; Hutchings, G. J. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Top. Catal.2007, 44, 123-128.
Horváth, A.; Beck, A.; Sárkány, A.; Stefler, G.; Varga, Z.; Geszti, O.; Tóth, L.; Guczi, L. Silica-supported Au nanoparticles decorated by TiO2: Formation, morphology, and CO oxidation activity. J. Phys. Chem. B2006, 110, 15417-15425.
Glaspell, G.; Hassan, H. M. A.; Elzatahry, A.; Fuoco, L.; Radwan, N. R. E.; El-Shall, M. S. Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts. J. Phys. Chem. B2006, 110, 21387-21393.
Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed.2006, 45, 8224-8227.
Zhong, L. -S.; Hu, J. -S.; Cao, A. M.; Liu, Q.; Song, W. G.; Wan, L. -J. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem. Mater.2007, 19, 1648-1655.
Zhong, Z. Y.; Ho, J.; Teo, J.; Shen, S. C.; Gedanken, A. Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem. Mater.2008, 19, 4776-4782.
Yu, K.; Wu, Z. C.; Zhao, Q. R.; Li, B. X.; Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C2008, 112, 2244-2247.
Wang, D. H.; Ma, Z.; Dai, S.; Liu, J.; Nie, Z. M.; Engelhard, M. H.; Huo, Q. S.; Wang, C. M.; Kou, R. Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. J. Phys. Chem. C2008, 112, 13499-13509.
Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett.2008, 8, 931-934.
Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett.2008, 8, 2867-2871.
Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed.2008, 47, 8924-8928.
Zhou, Z.; Kooi, S.; Flytzani-Stephanopoulos, M.; Saltsburg, H. The role of the interface in CO oxidation on Au/CeO2 multilayer nanotowers. Adv. Funct. Mater.2008, 18, 2801-2807.
Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res.2009, 2, 975-983.
Liu, X. Y.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. -Y.; Su, D. -S.; Li, J. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports. Chem. Mater.2009, 21, 410-418.
Wang, C.; Yin, H. F.; Chan, R.; Peng, S.; Dai, S.; Sun, S. H. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater.2009, 21, 433-435.
Yen, C. -W.; Lin, M. -L.; Wang, A. Q.; Chen, S. -A.; Chen, J. -M.; Mou, C. -Y. CO oxidation catalyzed by Au-Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C2009, 41, 17831-17839.
Jiang, H. -L.; Umegaki, T.; Akita, T.; Zhang, X. -B.; Haruta, M.; Xu, Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chem. Eur. J.2010, 16, 3132-3137.
Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater.2010, 22, 3277-3282.
Cao, C. -Y.; Cui, Z. -M.; Chen, C. -Q.; Song, W. -G.; Cai, W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C2010, 114, 9865-9870.
Laursen, A.; Højholt, K. T.; Lundegaard, L. F.; Simonsen, S. B.; Helveg, S.; Schüth, F.; Paul, M.; Grunwaldt, J. -D.; Kegnæs, S.; Christensen, C. H.; Egeblad, K. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed.2010, 49, 3504-3507.
Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc.2010, 132, 8466-8473.
Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed.2010, 49, 4981-4985.
Cargnello, M.; Gentilini, C.; Montini, T.; Fonda, E.; Mehraeen, S.; Chi, M. F.; Herrera-Collado, M.; Browning, N. D.; Polizzi, S.; Pasquato, L.; Fornasiero, P. Active and stable embedded Au@CeO2 catalysts for preferential oxidation of CO. Chem. Mater.2010, 22, 4335-4345.
Zhu, H. G.; Lee, B.; Dai, S.; Overbury, S. H. Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir2003, 19, 3974-3980.
Yan, W. F.; Chen, B.; Mahurin, S. M.; Dai, S.; Overbury, S. H. Brookite-supported highly stable gold catalytic system for CO oxidation. Chem. Commun.2004, 1918-1919.
Yan, W. F.; Chen, B.; Mahurin, S. M.; Hagaman, E. W.; Dai, S.; Overbury, S. H. Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B2004, 108, 2793-2796.
Zhu, H. G.; Pan, Z. W.; Chen, B.; Lee, B.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts. J. Phys. Chem. B2004, 108, 20038-20044.
Lee, B.; Zhu, H. G.; Zhang, Z. T.; Overbury, S. H.; Dai, S. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method. Micropor. Mesopor. Mater.2004, 70, 71-80.
Yan, W. F.; Petkov, V.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catal. Commun.2005, 6, 404-408.
Yan, W. F.; Chen, B.; Mahurin, S. M.; Schwartz, V.; Mullins, D. R.; Lupini, A. R.; Pennycook, S. J.; Dai, S.; Overbury, S. H. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B2005, 109, 10676-10685.
Yan, W. F.; Mahurin, S. M.; Pan, Z. W.; Overbury, S. H.; Dai, S. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. J. Am. Chem. Soc.2005, 127, 10480-10481.
Yan, W. F.; Mahurin, S. M.; Chen, B.; Overbury, S. H.; Dai, S. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. J. Phys. Chem. B2005, 109, 15489-15496.
Yan, W. F.; Brown, S.; Pan, Z. W.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew. Chem. Int. Ed.2006, 45, 3614-3618.
Yan, W. F.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Nanoengineering catalyst supports via layer-by-layer surface functionalization. Top. Catal.2006, 39, 199-212.
Zhu, H. G.; Liang, C. D.; Yan, W. F.; Overbury, S. H.; Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B2006, 110, 10842-10848.
Zhu, H. G.; Ma, Z.; Clark, J. C.; Pan, Z. W.; Overbury, S. H.; Dai, S. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Appl. Catal. A2007, 326, 89-99.
Zhu, H. G.; Ma, Z.; Overbury, S. H.; Dai, S. Rational design of gold catalysts with enhanced thermal stability: Post modification of Au/TiO2 by amorphous SiO2 decoration. Catal. Lett.2007, 116, 128-135.
Ma, Z.; Overbury, S. H.; Dai, S. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives. J. Mol. Catal. A2007, 273, 186-197.
Ma, Z.; Brown, S.; Overbury, S. H.; Dai, S. Au/PO43-/TiO2 and PO43-/Au/TiO2 catalysts for CO Oxidation: Effect of synthesis details on catalytic performance. Appl. Catal. A2007, 327, 226-237.
Ma, Z.; Liang, C. D.; Overbury, S. H.; Dai, S. Gold nanoparticles on electroless-deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation. J. Catal.2007, 252, 119-126.
Yan, W. F.; Chen, B.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Gold supported on microporous aluminophosphate AlPO4-H1 for selective oxidation of CO in a H2-rich stream. Stud. Surf. Sci. Catal.2007, 170, 1065-1071.
Yan, W. F.; Ma, Z.; Mahurin, S. M.; Jiao, J.; Hagaman, E. W.; Overbury, S. H.; Dai, S. Novel Au/TiO2/Al2O3·xH2O catalysts for CO oxidation. Catal. Lett.2008, 121, 209-218.
Ma, Z.; Zhu, H. G.; Yan, W. F.; Overbury, S. H.; Dai, S. Functionalized mesoporous materials for gold catalysis. In Nanoporous Materials: Proceedings of the 5th International Symposium; Sayari, A.; Jaroniec, M., eds.; World Scientific Publishing, Singapore, 2008; pp. 529-542.
Ma, Z.; Brown, S.; Howe, J. Y.; Overbury, S. H.; Dai, S. Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition. J. Phys. Chem. C2008, 112, 9448-9457.
Yin, H. F.; Ma, Z.; Overbury, S. H.; Dai, S. Promotion of Au(en)2Cl3-derived Au/fumed SiO2 by treatment with KMnO4. J. Phys. Chem. C2008, 112, 8349-8358.
Ma, Z.; Yin, H. F.; Overbury, S. H.; Dai, S. Metal phosphates as a new class of supports for gold nanocatalysts. Catal. Lett.2008, 126, 20-30.
Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S. H.; Dai, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun.2008, 4357-4359.
Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D. R.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. Chem. Phys. Chem.2008, 9, 2475-2479.
Ma, Z.; Overbury, S. H.; Dai, S. Gold nanoparticles as chemical catalysts. In Nanomaterials: Inorganic and Bioinorganic Perspectives; Lukehart, C. M.; Scott, R. A. eds.; John Wiley & Sons, Chichester, 2009; pp. 247-266.
Zhou, S. H.; Ma, Z.; Yin, H. F.; Wu, Z. L.; Eichhorn, B.; Overbury, S. H.; Dai, S. Low-temperature solution-phase synthesis of NiAu alloy nanoparticles via butyllithium reduction: Influence of synthesis details and application as the precursor to active Au-NiO/SiO2 catalysts through proper pretreatment. J. Phys. Chem. C2009, 113, 5758-5765.
Lee, B.; Ma, Z.; Zhang, Z.; Park, C.; Dai, S. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Micropor. Mesopor. Mater.2009, 122, 160-167.
Ma, Z.; Yin, H. F.; Dai, S. Performance of Au/MxOy/TiO2 catalysts in water-gas shift reaction. Catal. Lett.2010, 136, 83-91.
Yin, H. F.; Ma, Z.; Chi, M. F.; Dai, S. Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4. Catal. Lett.2010, 136, 209-221.
Ma, Z.; Yin, H. F.; Dai, S. Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation. Catal. Lett.2010, 40-45.
Bokhimi, X.; Zanella, R. Crystallite size and morphology of the phases in Au/TiO2 and Au/Ce-TiO2 catalysts. J. Phys. Chem. C2007, 111, 2525-2532.
Comotti, M.; Weidenthaler, C.; Li, W. -C.; Schüth, F. Comparison of gold supported catalysts obtained by using different allotropic forms of titanium dioxide. Top. Catal.2007, 44, 275-284.
Su, F. -Z.; Chen, M.; Wang, L. -C.; Huang, X. -S.; Liu, Y. -M.; Cao, Y.; He, H. Y.; Fan, K. -N. Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs. Chem. Commun.2008, 1027-1032.
Huang, J.; Dai, W. L.; Fan, K. N. Support effect of Au/FeOx catalysts in the oxidative dehydrogenation of α, γ-diols to lactones. J. Catal.2008, 112, 16110-16117.
Huang, J.; Dai, W. L.; Fan, K. N. Remarkable support crystal phase effect in Au/FeOx catalyzed oxidation of 1, 4-butanediol to γ-butyrolactone. J. Catal.2009, 266, 228-235.
Pietron, J. J.; Stroud, R. M.; Rolison, D. R. Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett.2002, 2, 545-549.
Rolison, D. R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science2003, 299, 1698-1701.
Carrettin, S.; Concepción, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed.2004, 43, 2538-2540.
Guzman, J.; Corma, A. Nanocrystalline and mesostructured Y2O3 as supports for gold catalysts. Chem. Commun.2005, 743-745.
Zhang, X.; Wang, H.; Xu, B. Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B2005, 109, 9678-9683.
Bokhimi, X.; Zanella, R.; Morales, A. Au/rutile catalysts: Effect of support dimensions on the gold crystallite size and the catalytic activity for CO oxidation. J. Phys. Chem. C2007, 111, 15210-15216.
Li, J.; Ta, N.; Song, W.; Zhan, E. S.; Shen, W. J. Au/ZrO2 catalysts for low-temperature water gas shift reaction: Influence of particle sizes. Gold Bull.2009, 42, 48-60.
Wang, G. -H.; Li, W. -C.; Jia, K. -M.; Spliethoff, B.; Schüth, F.; Lu, A. -H. Shape and size controlled α-Fe2O3 nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance. Appl. Catal. A2009, 364, 42-47.
Han, Y. -F.; Zhong, Z. Y.; Ramesh, K.; Chen, F.; Chen, L. Effects of different types of γ-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures. J. Phys. Chem. C2007, 111, 3163-3170.
Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed.2008, 47, 2884-2887.
Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. -Y.; Fan, K. -N. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J. Phys. Chem. C2008, 112, 1027-1032.
Yi, G. Q.; Xu, Z. N.; Guo, G. C.; Tanaka, K.; Yuan, Y. Z. Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst. Chem. Phys. Lett.2009, 479, 128-132.
Huang, X. -S.; Sun, H.; Wang, L. -C.; Liu, Y. -M.; Fan, K. -N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B2009, 90, 224-232.
Lin, S. D.; Bollinger, M.; Vannice, M. A. Low-temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett.1993, 17, 245-262.
Overbury, S. H.; Ortiz-Soto, L.; Zhu, H. G.; Lee, B.; Amiridis, M. D.; Dai, S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions. Catal. Lett.2004, 95, 99-106.
Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal.2001, 197, 113-122.
Lee, S. -J.; Gavriilidis, A. Supported Au catalysts for low-temperature CO oxidation prepared by impregnation. J. Catal.2002, 206, 305-313.
Wen, L.; Fu, J. -K.; Gu, P. -Y.; Yao, B. -X.; Lin, Z. -H.; Zhou, J. -Z. Monodispersed gold nanoparticles supported on γ-Al2O3 for enhancement of low-temperature catalytic oxidation of CO. Appl. Catal. B2008, 79, 402-409.
Okumura, M.; Tsubota, S.; Iwamoto, M.; Haruta, M. Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem. Lett.1998, 315-316.
Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett.1998, 51, 53-58.
Okumura, M.; Tsubota, S.; Haruta, M. Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A2003, 199, 73-84.
Yang, C. -M.; Kalwei, M.; Schüth, F.; Chao, K. -J. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Appl. Catal. A2003, 254, 289-296.
Chi, Y. -S.; Lin, H. -P.; Mou, C. -Y. CO oxidation over gold nanocatalyst confined in mesoporous silica. Appl. Catal. A2005, 284, 199-206.
Budroni, G., Corma, A. Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew. Chem. Int. Ed.2006, 45, 3328-3331.
Guillemot, D.; Polisset-Thfoin, M.; Fraissard, J. Preparation of nanometeric gold particles on NaHY. Catal. Lett.1996, 41, 143-148.
Bulushev, D. A.; Yuranov, I.; Suvorova, E. I.; Buffat, P. A.; Kiwi-Minsker, L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J. Catal.2004, 224, 8-17.
Zhu, L. H.; Letaief, S.; Liu, Y.; Gervais, F.; Detellier, C. Clay-mineral-supported gold nanoparticles. Appl. Clay. Sci.2009, 43, 439-446.
Zanella, R.; Sandoval, A.; Santiago, P.; Basiuk, V. A.; Saniger, J. M. New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B2006, 110, 8559-8565.
Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation. Chem. Commun.2008, 3308-3310.
Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: Nature and role of different Au species. J. Phys. Chem. C2009, 113, 3726-3734.
Yin, H. F.; Ma, Z.; Zhu, H. G.; Chi, M. F.; Dai, S. Evidence for and mitigation of the encapsulation of gold nanoparticles within SiO2 matrix upon calcining Au/SiO2 catalysts at high temperatures: implication to catalyst deactivation. Appl. Catal. A2010, 386, 147-156.
Venugopal, A.; Scurrell, M. S. Hydroxyapatite as a novel support for gold and ruthenium catalysts: Behaviour in the water gas shift reaction. Appl. Catal. A2003, 245, 137-147.
Lian, H. L.; Jia, M. J.; Pan, W. C.; Li, Y.; Zhang, W. X.; Jiang, D. Z. Gold-base catalysts supported on carbonate for low-temperature CO oxidation. Catal. Commun.2005, 6, 47-51.
Phonthammachai, N.; Zhong, Z. Y.; Guo, J.; Han, Y. F.; White, T. J. Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidation. Gold Bull.2008, 41, 42-50.
Han, Y. -F.; Phonthammachai, N.; Ramesh, K.; Zhong, Z. Y.; White, T. Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts. Ind. Eng. Chem. Res.2008, 42, 908-912.
Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res.2008, 1, 46-55.
Sun, H.; Su, F. -Z.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes. Angew. Chem. Int. Ed.2009, 48, 4390-4393.
Domínguez, M. I.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A. Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation. Appl. Catal. B2009, 87, 245-251.
Karimi, B.; Esfahani, F. K. Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature. Chem. Commun.2009, 5555-5557.
Mitsudome, T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst. Adv. Synth. Catal.2009, 351, 1890-1896.
Park, Y.; Lee, B.; Kim, C.; Kim, J.; Nam, S.; Oh, Y.; Park, B. Modification of gold catalysis with aluminum phosphate for oxygen-reduction reaction. J. Phys. Chem. C2010, 114, 3688-3692.
Liu, Y. M.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun.2010, 46, 550-552.
Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported gold and silver nanoparticles for catalytic deoxygenation of epoxide into alkenes. Angew. Chem. Int. Ed.2010, 49, 5545-5548.
Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Elsevier: Amsterdam, 1989.
Li, M. J.; Wu, Z. L.; Ma, Z.; Schwartz, V.; Mullins, D. R.; Dai, S.; Overbury, S. H. CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites. J. Catal.2009, 266, 98-105.
Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc.2005, 127, 3286-3287.
Guzman, J.; Carrettin, S.; Fierro-Gonzalez, J. C.; Hao, Y. L.; Gates, B. C.; Corma, A. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed.2005, 44, 4778-4781.
Ma, Z.; Zaera, F. Heterogeneous Catalysis by Metals. In Encyclopedia of Inorganic Chemistry (Second Edition); King, R. B., ed.; John Wiley & Sons: Chichester, 2005; pp. 1768-1784.
Bore, M. T.; Mokhonoana, M. P.; Ward, T. L.; Coville, N. J.; Datye, A. K. Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica. Micropor. Mesopor. Mater.2006, 95, 118-125.
Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijn, J. A. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind. Eng. Chem. Res.1999, 38, 884-891.
Stangland, E. E.; Stavens, K. B.; Andres, R. P.; Delgass, W. N. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J. Catal.2000, 191, 332-347.
Qi, C. X.; Akita, T.; Okumura, M.; Haruta, M. Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl. Catal. A2001, 218, 81-89.
Tai, Y.; Murakami, J.; Tajiri, K.; Ohashi, F.; Daté, M.; Tsubota, S. Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels. Appl. Catal. A2004, 268, 183-187.
Venezia, A. M.; Liotta, F. L.; Pantaleo, G.; Beck, A.; Horvath, A.; Geszti, O.; Kocsonya, A.; Guczi, L. Effect of Ti(IV) loading on CO oxidation activity of gold on TiO2 doped amorphous silica. Appl. Catal. A2006, 310, 114-121.
Bandyopadhyay, M.; Korsak, O.; van den Berg, M. W. E.; Grunert, W.; Birkner, A.; Li, W.; Schüth, F.; Gies, H. Gold nano-particles stabilized in mesoporous MCM-48 as active CO-oxidation catalyst. Micropor. Mesopor. Mater.2006, 89, 158-163.
Xu, L. -X.; He, C. -H.; Zhu, M. -Q.; Wu, K. -J.; Lai, Y. -L. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catal. Lett.2007, 118, 248-253.
Ruszel, M.; Grzybowska, B.; Łaniecki, M.; Wójtowski, M. Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation. Catal. Commun.2007, 8, 1284-1286.
Beck, A.; Horváth, A.; Stefler, G.; Katona, R.; Geszti, O.; Tolnai, G.; Liotta, L. F.; Guczi, L. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today2008, 139, 180-187.
Tai, Y.; Tajiri, K. Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl. Catal. A2008, 342, 113-118.
Tai, Y.; Yamaguchi, W.; Tajiri, K.; Kageyama, H. Structures and CO oxidation activities of size-selected Au nanoparticles in mesoporous titania-coated silica aerogels. Appl. Catal. A2009, 364, 143-149.
Beck, A.; Horváth, A.; Stefler, G.; Scurrel, M. S.; Guczi, L. Role of preparation techniques in the activity of Au/TiO2 nanostructures stabilised on SiO2: CO and preferential CO oxidation. Top. Catal.2009, 52, 912-919.
Narkhede, V. S.; De Toni, A.; Narkhede, V. V.; Guraya, M.; Niemantsverdriet, J. W.; van den Berg, M. W. E.; Grünert, W.; Gies, H. Au/TiO2 catalysts encapsulated in the mesopores of siliceous MCM-48—Reproducible synthesis, structural characterization and activity for CO oxidation. Micropor. Mesopor. Mater.2009, 118, 52-60.
Lim, S. H.; Phonthammachai, N.; Zhong, Z. Y.; Teo, J.; White, T. J. Robust gold-decorated silica-titania pebbles for low-temperature CO catalytic oxidation. Langmuir2009, 25, 9480-9486.
Peza-Ledesma, C. L.; Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Fierro, J. L. G. Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide. Appl. Catal. A2010, 375, 37-48.
Moreau, F.; Bond, G. C. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal. Today2006, 114, 362-368.
Xu, H. Y.; Chu, W.; Luo, J. J.; Liu, M. New Au/FeOx/SiO2 catalysts using deposition-precipitation for low-temperature carbon monoxide oxidation. Catal. Commun.2010, 11, 812-815.
Dekkers, M. A. P.; Lippits, M. J.; Nieuwenhuys, B. E., Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions. Catal. Today1999, 54, 381-390.
Xu, X. Y.; Li, J. J.; Hao, Z. P.; Zhao, W.; Hu, C. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. Mater. Res. Bull.2006, 41, 406-413.
Qian, K.; Huang, W. X.; Jiang, Z. Q.; Sun, H. X. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J. Catal.2007, 248, 137-141.
Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. Understanding the deposition-precipitation process for the preparation of supported Au catalysts. J. Mol. Catal. A2010, 320, 97-105.
Qian, K.; Huang, W. X.; Fang, J.; Lv, S. S.; He, B.; Jiang, Z. Q.; Wei, S. Q. Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. J. Catal.2008, 255, 269-278.
Qian, K.; Lv, S. S.; Xiao, X. Y.; Sun, H. X.; Lu, J. Q.; Luo, M. F.; Huang, W. X. Influence of CeO2 nicrostructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation. J. Mol. Catal. A2009, 306, 40-47.
Hernandez, J. A.; Gómez, S.; Pawelec, B.; Zepeda, T. A. CO oxidation on Au nanoparticles supported on wormhole HMS material: Effect of support modification with CeO2. Appl. Catal. B2009, 89, 128-136.
Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Rosmaninho, M. G.; Peza-Ledesma, C. L.; Fierro, J. L. G. SBA-15-supported gold nanoparticles decorated by CeO2: Structural characteristics and CO oxidation activity. Appl. Catal. A2010, 381, 42-53.
Veith, G. M.; Lupini, A. R.; Rashkeev, S.; Pennycook, S. J.; Mullins, D. R.; Schwartz, V.; Bridges, C. A.; Dudney, N. J. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal.2009, 262, 92-101.
Chang, L. -H.; Chen, Y. -W.; Sasirekha, N. Preferential oxidation of carbon monoxide in hydrogen stream over Au/MgOx-TiO2 catalysts. Ind. Eng. Chem. Res.2008, 47, 4098-4105.
Chang, L. -H.; Sasirekha, N.; Chen, Y. -W.; Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream. Catal. Commun.2007, 8, 1702-1710.
Shou, M.; Takekawa, H.; Ju, D. -Y.; Hagiwara, T.; Lu, D. -L.; Tanaka, K. Activation of a Au/TiO2 catalyst by loading a large amount of Fe-oxide: Oxidation of CO enhanced by H2 and H2O. Catal. Lett.2006, 108, 119-124.
Chang, F. -W.; Yu, H. -Y.; Roselin, L. S.; Yang, H. -C.; Ou, T. -C. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides. Appl. Catal. A2006, 302, 157-167.
Sangeetha, P.; Zhao, B.; Chen, Y. -W. Au/CuOx-TiO2 catalysts for preferential oxidation of CO in hydrogen stream. Ind. Eng. Chem. Res.2010, 49, 2096-2102.
Mallick, K.; Scurrell, M. S. CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: Catalytic activity effects due to surface modification of TiO2 with ZnO. Appl. Catal. A2003, 253, 527-536.
Sangeetha, P.; Chen, Y. -W. Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts. Int. J. Hydrogen Energ.2009, 34, 7342-7347.
Park, J. B.; Graciani, J.; Evans, J.; Stacchiola, D.; Ma, S. G.; Liu, P.; Nambu, A.; Sanz, J. F.; Hrbek, J.; Rodrigues, J. A. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc. Natl. Acad. Sci. USA2009, 106, 4975-4980.
Xie, Y. C.; Tang, Y. Q. Spontaneous monolayer dispersion of oxides and salts. Adv. Catal.1990, 37, 1-43.
Wang, C. -M.; Fan, K. -N.; Liu, Z. -P. Insight into the synergetic effect in ternary gold-based catalysts: Ultrastability and high activity of Au on alumina modified titania. J. Phys. Chem. C2007, 111, 13539-13546.
Hagaman, E. W.; Jiao, J.; Chen, B. H.; Ma, Z.; Yin, H. F. L.; Dai, S. Surface alumina species on modified titanium oxide. A solid-state 27Al MAS and 3QMAS NMR investigation of catalyst supports. Solid State NMR2010, 37, 82-90.
Grisel, R. J. H.; Nieuwenhuys, B. E. Selective oxidation of CO over supported Au catalysts. J. Catal.2001, 199, 48-59.
Szabó, E. G.; Hegedűs, M.; Szegedi, Á.; Sajó, I.; Margitfalvi, J. L. CO oxidation over Au/Al2O3 catalysts modified by MgO. React. Kinet. Catal. Lett.2005, 86, 339-345.
Szabó, E. G.; Hegedűs, M.; Lónyi, F.; Szegedi, Á.; Datye, A. K.; Margitfalvi, J. L. Preparation, characterization and activity of Au/Al2O3 modified by MgO. Catal. Commun.2009, 10, 889-893.
Grisel, R. J. H.; Nieuwenhuys, B. E. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal. Today2001, 64, 69-81.
Wang, D. H.; Hao, Z. P.; Cheng, D. Y.; Shi, X. C.; Hu, C. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts. J. Mol. Catal. A2003, 200, 229-238.
Szabó, E. G.; Hegedűs, M.; Margitfalvi, J. L. The role of the nano-environment of supported gold catalysts in the activity control. Modification of Au/Al2O3 catalysts by redox-type metal oxides. React. Kinet. Catal. Lett.2008, 93, 119-125.
Wang, D. H.; Hao, Z. P.; Cheng, D. Y.; Shi, X. C. Influence of the calcination temperature on the Au/FeOx/Al2O3 catalyst. J. Chem. Technol. Biotechnol.2006, 1246-1251.
Wang, F.; Lu, G. X. Control reaction path of CO oxidation by regulating the oxidation state of Au species. Catal. Lett.2010, 134, 72-77.
Gluhoi, A. C.; Nieuwenhuys, B. E. Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts: Effect of various promoters. Catal. Today2007, 119, 305-310.
Somodi, F.; Borbáth, I.; Hegedűs, M.; Lázár, K.; Sajó, I.; Geszti, O.; Rojas, S.; Fierro, J. L. G.; Margitfalvi, J. L. Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation. Appl. Surf. Sci.2009, 256, 726-736.
Hereijgers, B. P. C.; Weckhuysen, B. M. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. Chem. Suc. Chem.2009, 2, 743-748.
Centeno, M. A.; Paulis, M.; Montes, M.; Odriozola, J. A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Appl. Catal. A2002, 234, 65-78.
Centeno, M. A.; Portales, C.; Carrizosa, I.; Odriozola, J. A. Gold supported CeO2/Al2O3 catalysts for CO oxidation: Influence of the ceria phase. Catal. Lett.2005, 102, 289-297.
Lakshmanan, P.; Delannoy, L.; Richard, V.; Méthivier, C.; Potvin, C.; Louis, C. Total oxidation of propene over Au/xCeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment. Appl. Catal. B2010, 96, 117-125.
Yuan, Q.; Duan, H. -H.; Li, L. -L.; Li, Z. -X.; Duan, W. -T.; Zhang, L. -S.; Song, W. -G.; Yan, C. -H. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina. Angew. Chem. Int. Ed.2010, 22, 1475-1478.
Gluhoi, A. C.; Tang, X.; Marginean, P.; Nieuwenhuys, B. E. Characterization and catalytic activity of unpromoted and alkali (earth)-promoted Au/Al2O3 catalysts for low-temperature CO oxidation. Top. Catal.2006, 39, 101-110.
Gluhoi, A. C.; Nieuwenhuys, B. E. Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold. Catal. Today2007, 122, 226-232.
Prati, L.; Martra, G. New gold catalysts for liquid phase oxidation. Gold Bull.1999, 32, 96-101.
Ketchie, W. C.; Fang, Y. -L.; Wong, M. S.; Murayama, M.; Davis, R. J. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal.2007, 250, 95-102.
Huang, X. K.; Yue, H. J.; Attia, A.; Yang, Y. Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black. J. Electrochem. Soc.2007, 154, A26-A33.
Hammer, N.; Kvande, I.; Chen, D.; Rønning, M. Au-TiO2 catalysts stabilised by carbon nanofibres. Catal. Today2007, 122, 365-369.
Hammer, N.; Kvande, I.; Xu, X.; Gunnarsson, V.; Totdal, B.; Chen, D.; Rønning, M. Au-TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catal. Today2007, 123, 245-256.
George, P. P.; Gedanken, A.; Perkas, N.; Zhong, Z. Y. Selective oxidation of CO in the presence of air over gold-based catalysts Au/TiO2/C (sonochemistry) and Au/TiO2/C (microwave). Ultrason. Sonochem.2007, 15, 539-547.
Bulushev, D. A.; Kiwi-Minsker, L.; Yuranov, I.; Suvorova, E. I.; Buffat, P. A.; Renken, A. Structured Au/FeOx/C catalysts for low-temperature CO oxidation. J. Catal.2002, 210, 149-159.
Khanderi, J.; Hoffmann, R. C.; Engstler, J.; Schneider, J. J.; Arras, J.; Claus, P.; Cherkashinin, G. Binary Au/MWCNT and ternary Au/ZnO/MWCNT nanocomposites: Synthesis, characterization and catalytic performance. Chem. Eur. J.2010, 16, 2300-2308.
Solsona, B.; Conte, M.; Cong, Y.; Carley, A.; Hutchings, G. Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. Chem. Commun.2005, 2351-2353.
Kanazawa, T. Suppression of Pt sintering on MFI zeolite by modification with tetramethoxysilane. Catal. Lett.2006, 108, 45-47.
Takenaka, S.; Matsumori, H.; Nakagawa, K.; Matsune, H.; Tanabe, E.; Kishida, M. Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J. Phys. Chem. C2007, 111, 15133-15136.
Takenaka, S.; Arike, T.; Matsune, H.; Tanabe, E.; Kishida, M. Preparation of carbon nanotube-supported metal nanoparticles coated with silica layers. J. Catal.2008, 257, 345-355.
Nakagawa, K.; Tanimoto, Y.; Okayama, T.; Sotowa, K. -I.; Sugiyama, S.; Takenaka, S.; Kishida, M. Sintering resistance and catalytic activity of platinum nanoparticles covered with a microporous silica layer using methyltriethoxysilane. Catal. Lett.2010, 136, 71-76.
Zhang, P.; Chi, M. F.; Sharma, S.; McFarland, E. W. Silica encapsulated heterostructure catalyst of Pt nanoclusters on hematite nanocubes: synthesis and reactivity. J. Mater. Chem.2010, 20, 2013-2017.
Rashkeev, S. N.; Dai, S.; Overbury, S. H. Modification of Au/TiO2 nanosystems by SiO2 monolayers: Toward the control of the catalyst activity and stability. J. Phys. Chem. C2010, 114, 2996-3002.
Guczi, L.; Frey, K.; Beck, A.; Petõ, B.; Daróczi, C. S.; Kruse, N.; Chenakin, S. Iron oxide overlayers on Au/SiO2/Si(100): Promoting effect of Au on the catalytic activity of iron oxide in CO oxidation. Appl. Catal. A2005, 291, 116-125.
Guczi, L.; Pászti, Z.; Frey, K.; Beck, A.; Pető, G.; Daróczy, C. S. Modeling gold/iron oxide interface system. Top. Catal.2006, 39, 137-143.
Dong, X. P.; Shen, W. H.; Zhu, Y. F.; Xiong, L. M.; Gu, J. L.; Shi, J. L. Investigation on Mn-loaded mesoporous silica MCM-41 prepared via reducing KMnO4 with in situ surfactant. Micropor. Mesopor. Mater.2005, 81, 235-240.
Dong, X. P.; Shen, W. H.; Zhu, Y. F.; Xiong, L. M.; Shi, J. L. Facile synthesis of manganese-loaded mesoporous silica materials by direct reaction between KMnO4 and an in-situ surfactant template. Adv. Funct. Mater.2005, 15, 955-960.
Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett.2005, 5, 379-382.
Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H. Recent progress in synthesis and applications of dumbbell-like nanoparticles. Adv. Mater.2009, 21, 3045-3052.
Lee, Y.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4. Angew. Chem. Int. Ed.2010, 49, 1271-1274.
Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science2006, 311, 362-365.
Bracey, C. L.; Ellis, P. R.; Hutchings, G. J. Application of copper-gold alloys in catalysis: Current status and future perspectives. Chem. Soc. Rev.2009, 38, 2231-2243.
Keane, M. A.; Gómez-Quero, S.; Cárdenas-Lizana, F.; Shen, W. Q. Alumina-supported Ni-Au: Surface synergistic effects in catalytic hydrodechlorination. Chem. Cat. Chem.2009, 1, 270-278.
Wong, M. S.; Alvarez, P. J. J.; Fang, Y. -L.; Akçin, N.; Nutt, M. O.; Miller, J. T.; Heck, K. N. Cleaner water using bimetallic nanoparticle catalysts. J. Chem. Technol. Biotechnol.2009, 84, 158-166.
Chen, Y. T.; Lim, H. M.; Tang, Q. H.; Gao, Y. T.; Sun, T.; Yan, Q. Y.; Yang, Y. H. Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au-Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl. Catal. A2010, 380, 55-65.
Ye, Q.; Wang, J.; Zhao, J. S.; Yan, L. N.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Pt or Pd-doped Au/SnO2 catalysts: High activity for low-temperature CO oxidation. Catal. Lett.2010, 138, 56-61.
Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. J. Am. Chem. Soc.2005, 127, 1380-1381.
Liu, J. -H.; Wang, A. -Q.; Chi, Y. -S.; Lin, H. -P.; Mou, C. -Y. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B2005, 109, 40-43.
Wang, A. -Q.; Liu, J. -H.; Lin, S. D.; Lin, T. -S.; Mou, C. -Y. A novel efficient Au-Ag alloy catalyst system: Preparation, activity, and characterization. J. Catal.2005, 233, 186-197.
Wang, A. Q.; Chang, C. M.; Mou, C. Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B2005, 109, 18860-18867.
Wang, A. Q.; Hsieh, Y. -P.; Chen, Y. -F.; Mou, C. -Y. Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal.2006, 237, 197-206.
Liu, X. Y.; Wang, A. Q.; Wang, X. D.; Mou, C. Y.; Zhang, T. Au-Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun.2008, 3187-3189.
Baiker, A.; Gasser, D.; Lenzner, J.; Reller, A.; Schlögl, R. Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy. 1. Bulk structural, morphological, and catalytic properties of catalyst. J. Catal.1990, 126, 555-571.
Schlögl, R.; Loose, G.; Wesemann, M.; Baiker, A. Oxidation of carbon monoxide over palladium on zirconia prepared from amorphous Pd-Zr alloy. 2. The nature of the active surface. J. Catal.1992, 137, 139-157.
Baiker, A.; Maciejewski, M.; Tagliaferri, S.; Hug, P. Carbon monoxide oxidation over catalysts prepared by in situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys. J. Catal.1995, 151, 407-419.
Dawood, F.; Leonard, B. M.; Schaak, R. E. Oxidative transformation of intermetallic nanoparticles: An alternative pathway to metal/oxide nanocomposites, textured ceramics, and nanocrystalline multimetal oxides. Chem. Mater.2007, 19, 4545-4550.
Albonetti, S.; Bonelli, R.; Mengou, J. E.; Femoni, C.; Tiozzo, C.; Zacchini, S.; Trifirò, F. Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catal. Today2008, 137, 483-488.
Albonetti, S.; Bonelli, R.; Delaigle, R.; Femoni, C.; Gaigneaux, E. M.; Morandi, V.; Ortolani, L.; Tiozzo, C.; Zacchini, S.; Trifirò, F. Catalytic combustion of toluene over cluster-derived gold/iron catalysts. Appl. Catal. A2010, 372, 138-146.
Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir1996, 12, 4329-4335.
Liz-Marzan, L. M.; Mulvaney, P. The assembly of coated nanocrystals. J. Phys. Chem. B2003, 107, 7312-7326.
Botella, P.; Corma, A.; Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater.2007, 19, 1979-1983.
Casavola, M.; Buonsanti, R.; Caputo, G.; Cozzoli, P. D. Colloidal strategies for preparing oxide-based hybride nanocrystals. Eur. J. Inorg. Chem.2008, 837-854.
Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core-hollow shell nanoparticles. Adv. Mater.2008, 20, 4323-4329.
Joo, S. H.; Park, J. Y.; Tsung, C. -K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater.2009, 8, 126-131.
Liu, S. H.; Han, M. Y. Silica-coated metal nanoparticles. Chem. Asian J.2010, 5, 36-45.
Ikeda, M.; Tago, T.; Kishida, M.; Wakabayashi, K. Thermal stability of an SiO2-coated Rh catalyst and catalytic activity in NO reduction by CO. Chem. Commun.2001, 2512-2513.
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science2004, 304, 711-714.
Takenaka, S.; Hori, K.; Matsune, H.; Kishida, M. Control of selectivity based on the diffusion rates of the reactants in the oxidation of mixed hydrocarbons with molecular oxygen over silica-coated Pt catalysts. Chem. Lett.2005, 34, 1594-1595.
Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C. Engineering Pt in ceria for a maximum metal-support interaction in catalysis. J. Am. Chem. Soc.2005, 127, 18010-18011.
Yeung, C. M. Y.; Meunier, F.; Burch, R.; Thompsett, D.; Tsang, S. C. Comparison of new microemulsion prepared "Pt-in-Ceria" catalyst with conventional "Pt-on-Ceria" catalyst for water-gas shift reaction. J. Phys. Chem. B2006, 110, 8540-8543.
Takenaka, S.; Umebayashi, H.; Tanabe, E.; Matsune, H.; Kishida, M. Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas. J. Catal.2007, 245, 392-400.
Park, J. N.; Forman, A. J.; Tang, W.; Cheng, J. H.; Hu, Y. -S.; Lin, H. F.; McFarland, E. W. Highly active and sinter-resistant Pd nanoparticle catalysts encapsulated in silica. Small2008, 4, 1694-1697.
Yu, K. M. K.; Yeung, C. M. Y.; Thompsett, D.; Tsang, S. C. Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts. J. Phys. Chem. B2003, 107, 4515-4526.
Yu, K. M. K.; Thompsett, D.; Tsang, S. C. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor. Chem. Commun.2003, 1522-1523.
Kong, T. S. A.; Yu, K. M. K.; Tsang, S. C. Silica coated noble metal nanoparticle hydrosols as supported catalyst precursors. J. Nanosci. Nanotechnol.2006, 6, 1167-1172.
Ma, Z.; Dai, S. Materials design of advanced performance metal catalysts. Mater. Technol.2008, 21, 81-87.
De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.; Montini, T.; Fornasiero, P. Embedded phases: A way to active and stable catalysts. Chem. Sus. Chem.2010, 3, 24-42.
Lee, J.; Park, J. C.; Bang, J. U.; Song, H. Precise tuning of porisity and surface functionality in Au@SiO2 nanoreactors for high activity efficiency. Chem. Mater.2008, 20, 5839-5844.
Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater.2008, 20, 1523-1528.
Huang, X. Q.; Guo, C. Y.; Zuo, J. Q.; Zheng, N. F.; Stucky, G. D. An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small2009, 5, 361-365.
Güttel, R.; Paul, M.; Schüth, F. Ex-post size control of high-temperature-stable yolk-shell Au@ZrO2 catalysts. Chem. Commun.2010, 46, 895-897.
Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano2010, 4, 529-539.
Li, J.; Zeng, H. C. Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew. Chem. Int. Ed.2005, 44, 4342-4345.
Wu, X. -F.; Song, H. -Y.; Yoon, J. -M.; Yu, Y. -T.; Chen, Y. -F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphologies and their photocatalytic properties. Langmuir2009, 25, 6438-6447.
Chen, Y. L.; Zhu, B. L.; Yao, M. Y.; Wang, S. R.; Zhang, S. M. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catal. Commun.2010, 11, 1003-1007.
Hagaman, E. W.; Zhu, H. G.; Overbury, S. H.; Dai, S. 13C NMR characterization of the organic constituents in ligand-modified hexagonal mesoporous silicas: Media for the synthesis of small, uniform-size gold nanoparticles. Langmuir2004, 20, 9577-9584.
Schwartz, V.; Mullins, D. R.; Yan, W. F.; Chen, B.; Dai, S.; Overbury, S. H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B2004, 108, 15782-15790.
Schwartz, V.; Mullins, D. R.; Yan, W. F.; Zhu, H. G.; Dai, S.; Overbury, S. H. Structural investigation of Au catalysts on TiO2-SiO2 supports: Nature of the local structure of Ti and Au atoms by EXAFS and XANES. J. Phys. Chem. C2007, 111, 17322-17332.
Dmowski, W.; Yin, H. F.; Dai, S.; Overbury, S. H.; Egami, T. Atomic structure of Au nanoparticles on a silica support by an X-ray PDF study. J. Phys. Chem. C2010, 114, 6983-6988.
Akita, T.; Okumura, M.; Tanaka, K.; Kohyama, M.; Haruta, M. Analytical TEM observation of Au nano-particles on cerium oxide. Catal. Today2006, 117, 62-68.
Akita, T.; Tanaka, K.; Kohyama, M.; Haruta, M. Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catal. Today2007, 122, 233-238.
Majimel, J.; Lamirand-Majimel, M.; Moog, I.; Feral-Martin, C.; Tréguer-Delapierre, M. Size-dependent stability of supported gold nanostructures onto ceria: An HRTEM study. J. Phys. Chem. C2009, 113, 9275-9283.
Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science2008, 321, 1331-1335.
González, J. C.; Hernández, J. C.; López-Haro, M.; del Río, E.; Delgado, J. J.; Hungría, A. B.; Trasobares, S.; Bernal, S.; Midgley, P. A.; Calvino, J. J. 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed.2009, 48, 5313-5315.
Allard, L. F.; Borisevich, A.; Deng, W. L.; Si, R.; Flytzani-Stephanopoulos, M.; Overbury, S. H. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc.2009, 58, 199-212.
832
Views
15
Downloads
170
Crossref
N/A
Web of Science
175
Scopus
17
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.