AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (572.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

LiMn2O4 Microspheres: Synthesis, Characterization and Use As a Cathode in Lithium Ion Batteries

Xiaoling XiaoJun LuYadong Li( )
Department of Chemistry and State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Solid and hollow microspheres of LiMn2O4 have been synthesized by lithiating MnCO3 solid microspheres and MnO2 hollow microspheres, respectively. The LiMn2O4 solid microspheres and hollow microspheres had a similar size of about 1.5 μm, and the shell thickness of the hollow microspheres was only 100 nm. When used as a cathode material in lithium ion batteries, the hollow microspheres exhibited better rate capability than the solid microspheres. However, the tap density of the LiMn2O4 solid microspheres (1.0 g/cm3) was about four times that of the hollow microspheres (0.27 g/cm3). The results show that controlling the particle size of LiMn2O4 is very important in terms of its practical application as a cathode material, and LiMn2O4 with moderate particle size may afford acceptable values of both rate capability and tap density.

References

1

Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui. Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 39484–39488.

2

Pasquier, A. D.; Huang, C. C.; Spitler, T. Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life. J. Power Sources 2009, 186, 508–514.

3

Ying, J. R.; Jiang, C. Y.; Wan, C. R. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 2004, 129, 264–269.

4

He, X. M.; Li, J. J.; Cai, Y.; Wang, Y.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J. Power Sources 2005, 150, 216–222.

5

Liu, Z. L.; Zhang, X. H.; Hong, L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries. J. Appl. Electrochem. 2009, 39, 2433–2438.

6

Gao, J.; Jiang, C. Y.; Ying, J. R.; Wan, C. R. Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J. Power Sources 2006, 155, 364–367.

7

Gao, J.; Ying, J. R.; Jiang, C. Y.; Wan, C. R. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Power Sources 2007, 166, 255–259.

8

Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W.; Yang, Y.; Wang, K. W.; He, Q.; Li, J. B. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 2008, 20, 452–456.

9

Cao, J.; Zhu, Y. C.; Bao, K. Y.; Shi, L.; Liu, S. Z.; Qian, Y. T. Microscale Mn2O3 hollow structures: Sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties. J. Phys. Chem. C 2009, 113, 17755–17760.

10

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; von Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

11

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

12

Guo, X. W.; Lu, X.; Fang, X. P.; Mao, Y.; Wang, Z. X.; Chen, L. Q.; Xu, X. X.; Yang, H.; Liu, Y. N. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 847–850.

13

Zaghib, K.; Goodenough, J. B.; Mauger, A.; Julien, C. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries. J. Power Sources 2009, 194, 1021–1023.

14

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

15

Wu, X. L.; Liu, Q.; Guo, Y. G.; Song, W. G. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1468–1471.

16

Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Amer. Chem. Soc. 2008, 130, 5361–5367.

17

Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

18

Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303–306.

19

Wang, D. S.; Ma, X. L.; Yang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q. Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.

Nano Research
Pages 733-737
Cite this article:
Xiao X, Lu J, Li Y. LiMn2O4 Microspheres: Synthesis, Characterization and Use As a Cathode in Lithium Ion Batteries. Nano Research, 2010, 3(10): 733-737. https://doi.org/10.1007/s12274-010-0037-1

554

Views

25

Downloads

99

Crossref

N/A

Web of Science

97

Scopus

0

CSCD

Altmetrics

Received: 23 July 2010
Revised: 26 August 2010
Accepted: 27 August 2010
Published: 21 September 2010
© The Author(s) 2010

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return