Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The synthesis of graphene–semiconductor nanocomposites has attracted increasing attention due to their interesting optoelectronic properties. However the synthesis of such nanocomposites, with decorated particles well dispersed on graphene, is still a great challenge. This work reports a facile, one-step, solvothermal method for the synthesis of graphene–CdS and graphene–ZnS quantum dot nanocomposites directly from graphene oxide, with CdS and ZnS very well dispersed on the graphene nanosheets. Photoluminescence measurements showed that the integration of CdS and ZnS with graphene significantly decreases their photoluminescence. Transient photovoltage studies revealed that the graphene–CdS nanocomposite exhibits a very unexpected strong positive photovoltaic response, while separate samples of graphene and CdS quantum dots (QDs) of a similar size do not show any photovoltaic response.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.
Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang J. C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009, 9, 1883–1888.
Ang, P. K.; Chen, W.; Wee A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.
Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.
Stoller, M. D.; Park, S.; Zhu, Y.; An J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.
Stampfer, C.; Schurtenberger, E.; Molitor, F.; Guttinger, J.; Ihn, T.; Ensslin, K. Tunable graphene single electron transistor. Nano Lett. 2008, 8, 2378–2383.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.
Yong, V.; Tour, J. M. Theoretical efficiency of graphene-based photovoltaics. Small 2010, 6, 313–318.
Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014–3017.
Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17, 2458–2463.
Gu, F.; Li, C.; Wang, S. Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg. Chem. 2007, 46, 5343–5348.
Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.
Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.
Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.
Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.
Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.
Yuge, R.; Zhang, M.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008, 2, 1865–1870.
Williams, G.; Kamat, P. V. Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.
Duzhko, V.; Timoshenko, V. Y.; Koch, F.; Dittrich, T. Photovoltage in nanocrystalline porous TiO2. Phys. Rev. B 2001, 64, 075204.
Fang, Q.; Zhu, G.; Jin, Z.; Xue, M.; Wei, X.; Wang, D.; Qiu, S. A multifunctional metal–organic open framework with a bcu topology constructed from undecanuclear clusters. Angew. Chem. Int. Ed. 2006, 45, 6126–6130.
Wei, X.; Xie, T.; Xu, D.; Zhao, Q.; Pang, S.; Wang, D. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology 2008, 19, 275707.
Wang, P.; Xie, T.; Li, H.; Peng, L.; Zhang, Y.; Wu, T.; Pang, S.; Zhao, Y.; Wang, D. Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres. Chem. Eur. J. 2009, 15, 4366–4372.
Zhang, Q.; Wang, D.; Wei, X.; Xie, T.; Li, Z.; Lin, Y.; Yang, M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure. Thin Solid Films 2005, 491, 242–248.
Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J. Phys. Chem. B 2004, 108, 3202–3206.
863
Views
50
Downloads
179
Crossref
N/A
Web of Science
189
Scopus
0
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.