PDF (1.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Synthesis and Device Applications of High-Density Aligned Carbon Nanotubes Using Low-Pressure Chemical Vapor Deposition and Stacked Multiple Transfer

Chuan WangKoungmin RyuLewis Gomez De ArcoAlexander BadmaevJialu ZhangXue LinYuchi CheChongwu Zhou()
Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

For nanotube-based electronics to become a viable alternative to silicon technology, high-density aligned carbon nanotubes are essential. In this paper, we report the combined use of low-pressure chemical vapor deposition and stacked multiple transfer to achieve high-density aligned nanotubes. By using an optimized nanotube synthesis recipe, we have achieved high-density aligned carbon nanotubes with density as high as 30 tubes/μm. In addition, a facile stacked multiple transfer technique has been developed to further increase the nanotube density to 55 tubes/μm. Furthermore, high-performance submicron carbon nanotube field-effect transistors have been fabricated on the high-density aligned nanotubes. Before removing the metallic nanotubes by electrical breakdown, the devices exhibit on-current density of 92.4 μA/μm and normalized transconductance of 13.3 μS/μm. Moreover, benchmarking with the aligned carbon nanotube transistors in the literature indicates that our devices exhibit the best performance so far, which is attributed to both the increased nanotube density and scaling down of channel length. This study shows the great potential of using such high-density aligned nanotubes for high performance nanoelectronics and analog/RF applications.

Electronic Supplementary Material

Download File(s)
nr-3-12-831_ESM.pdf (450.4 KB)

References

1

Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922–1925.

2

Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.

3

Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.

4

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

5

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

6

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

7

Liu, X.; Lee, C.; Han, J.; Zhou, C. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.

8

Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

9

Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

10

Chen, Z.; Appenzeller, J.; Lin, Y.; Oakley, J. S.; Rinzler, A. G.; Tang, J.; Wind, S. J.; Solomon, P. M.; Avouris, Ph. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.

11

Amlani. I.; Lewis, J.; Lee, K.; Zhang, R.; Deng, J.; Wong, H. S. P. First demonstration of AC gain from a single-walled carbon nanotube common-source amplifier. IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2006, pp 559–562.

12

Li, S.; Yu, Z.; Yen, S.; Tang, W.; Burke, P. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 2004, 4, 753–756.

13

Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108-1–233108-3.

14

Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J. P.; Green, A. A.; Hersam, M. C. 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505-1–243505-3.

15

Kocabas, C.; Kim, H.; Banks, T.; Rogers, J.; Pesetski, A.; Baumgardner, J.; Krishnaswamy, S.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Nat. Acad. Sci. 2008, 105, 1405–1409.

16

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X.; Kim, H.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

17

Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.

18

Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.

19

Han, S.; Liu, X.; Zhou, C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

20

Kocabas, C.; Hur, S.; Gaur, A.; Meitl, M.; Shim, M.; Rogers, J. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

21

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol. 2007, 2, 230–236.

22

Patil, N.; Lin, A.; Myers, E. R.; Wong, H. S. P.; Mitra, S. Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned carbon nanotube immune logic structures. Proceedings of the 2008 VLSI Technology Symposium, Honolulu, USA, 2008, pp 205–206.

23

Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

24

Wang, C.; Ryu, K.; Badmaev, A.; Patil, N.; Lin, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. Device study, chemical doping and logic circuits based on transferred aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2008, 93, 033101-1–033101-3.

25

Ding, L.; Yuan, D.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

26

Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826–1830.

27

Patil, N.; Deng, J.; Mitra, S.; Wong, H. S. P. Circuit-level performance benchmarking and scalability analysis of carbon nanotube transistor circuits. IEEE Trans. Nanotechnol. 2009, 8, 37–45.

28

Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

29

Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotechnol. 2009, 4, 811–819.

30

Cao, Q.; Xia, M.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516-1–023516-4.

31

Zhou, C.; Kong, J.; Dai, H. Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 2000, 76, 1597–1599.

32

Liu, X.; Han, S.; Zhou, C. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 2006, 6, 34–39.

33

Ishikawa, F.; Chang, H.; Ryu, K.; Chen, P.; Badmaev, A.; De Arco Gomez, L.; Shen, G.; Zhou, C. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

34

Lin, A.; Patil, N.; Ryu, K.; Badmaev, A.; De Arco Gomez, L.; Zhou, C.; Mitra, S.; Wong, H. S. P. Threshold voltage and on–off ratio tuning for multiple-tube carbon nanotube FETs. IEEE Trans. Nanotechnol. 2009, 8, 4–9.

35

Patil, N.; Lin, A.; Myers, E. R.; Ryu, K.; Badmaev, A.; Zhou, C.; Wong, H. S. P.; Mitra, S. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 2009, 8, 498–504.

36

Ding, L; Tselev, A.; Wang, J.; Yuan, D.; Chu, H.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

Nano Research
Pages 831-842
Cite this article:
Wang C, Ryu K, De Arco LG, et al. Synthesis and Device Applications of High-Density Aligned Carbon Nanotubes Using Low-Pressure Chemical Vapor Deposition and Stacked Multiple Transfer. Nano Research, 2010, 3(12): 831-842. https://doi.org/10.1007/s12274-010-0054-0
Metrics & Citations  
Article History
Copyright
Rights and Permissions