AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Selective Synthesis of Hexagonal Ag Nanoplates in a Solution-Phase Chemical Reduction Process

Mingzhu Liu1,2Mei Leng1,2Chao Yu1,2Xin Wang3Cheng Wang1( )
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
Graduate School of the Chinese Academy of SciencesBeijing100049China
Division of Chemical and Biomolecular EngineeringNanyang Technological University637722Singapore
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2-D) Ag nanoplates have surface plasmon resonances which can be tuned from the visible to the near-IR by varying the size and morphology of the nanoplates. Due to their anisotropic structures and different surface energy distributions, Ag nanoplates—especially triangular ones—are kinetically stable and can transform into other nanostructures. Taking advantage of the synergetic effects of HNO3 and Cl in the reduction solution, uniform Ag hexagonal nanoplates (HNPs) have been captured during the transformation of Ag triangular nanoplates (TNPs). The dimensions of the Ag HNPs can be controlled by changing the concentrations of reagents in the reaction or/and reduction solutions. Resonance absorption spectra of the obtained Ag HNPs indicated that their in-plane resonance peaks could be tuned from the visible to the near-IR region, showing their potential applications in medical diagnosis.

Electronic Supplementary Material

Download File(s)
nr-3-12-843_ESM.pdf (819 KB)

References

1

Pastoriza-Santos, I.; Liz-Marzan, L. M. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 2008, 18, 1724–1737.

2

Charles, D. E.; Aherne, D.; Gara, M.; Ledwith, D. M.; Gun'ko, Y. K.; Kelly, J. M.; Blau, W. J.; Brennan-Fournet, M. E. Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 2009, 4, 55–64.

3

Brioude, A.; Pileni, M. P. Silver nanodisks: Optical properties study using the discrete dipole approximation method. J. Phys. Chem. B 2005, 109, 23371–23377.

4

Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.

5

Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 2001, 123, 1471–1482.

6

Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Ranjit Yonzon, C.; Van Duyne, R. P. A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 2003, 107, 1772–1780.

7

Yonzon, C. R.; Jeoung, E.; Zou, S.; Schatz, G. C.; Mrksich, M.; Van Duyne, R. P. A Comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc. 2004, 126, 12669–12676.

8

Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537.

9

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

10

Cui, B.; Clime, L.; Li, K.; Veres, T. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 2008, 19, 145302.

11

Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J. Phys. Chem. C 2007, 111, 3259–3265.

12

Lakshminarayana, P.; Qing-Hua, X.; Mohan, S. D.; Wei, J. Optical limiting properties of silver nanoprisms. Appl. Phys. Lett. 2008, 92, 263110.

13

Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853.

14

Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556.

15

Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

16

Callegari, A.; Tonti, D.; Chergui, M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett. 2003, 3, 1565–1568.

17

Jin, R. C.; Cao, Y. C.; Hao, E. C.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.

18

An, J.; Tang, B.; Ning, X.; Zhou, J.; Zhao, B.; Xu, W.; Corredor, C.; Lombardi, J. R. Photoinduced shape evolution: From triangular to hexagonal silver nanoplates. J. Phys. Chem. C 2007, 111, 18055–18059.

19

Zhang, Q.; Ge, J. P.; Pham, T.; Goebl, J.; Hu, Y. X.; Lu, Z.; Yin, Y. D. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angew. Chem. Int. Ed. 2009, 48, 3516–3519.

20

Metraux, G. S.; Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17, 412–415.

21

Xue, C.; Mirkin, C. A. pH-switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed. 2007, 46, 2036–2038.

22

Chen, S.; Fan, Z.; Carroll, D. L. Silver nanodisks: Synthesis, characterization, and self-assembly. J. Phys. Chem. B 2002, 106, 10777–10781.

23

Chen, S. H.; Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2002, 2, 1003–1007.

24

Maillard, M.; Giorgio, S.; Pileni, M. P. Silver nanodisks. Adv. Mater. 2002, 14, 1084–1086.

25

Washio, I.; Xiong, Y. J.; Yin, Y. D.; Xia, Y. N. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 2006, 18, 1745–1749.

26

Pastoriza-Santos, I.; Liz-Marzan, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2002, 2, 903–905.

27

Jia, H. Y.; Zeng, J. B.; An, J.; Song, W.; Xu, W. Q.; Zhao, B. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate. Thin Solid Films 2008, 516, 5004–5009.

28

Wiley, B.; Sun, Y.; Xia, Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 2007, 40, 1067–1076.

29

C. Lofton, W. S. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.

30

Aherne, D.; Ledwith, D. M.; Gara. M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005–2016.

31

Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.

32

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

33

Cao, Z. W.; Fu, H. B.; Kang, L. T.; Huang, L. W.; Zhai, T. Y.; Ma, Y.; Yao, J. N. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. J. Mater. Chem. 2008, 18, 2673–2678.

34

Rocha, T. C. R.; Zanchet, D. Structural defects and their role in the growth of Ag triangular nanoplates. J. Phys. Chem. C 2007, 111, 6989–6993.

35

Pietrobon, B.; Kitaev, V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem. Mater. 2008, 20, 5186–5190.

36

Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C 2009, 113, 6573–6576.

37

Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. N. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44, 2154–2157.

38

Sun, Y. A.; Xia, Y. N. Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 2003, 15, 695–699.

39

Tang, B.; Xu, S. P.; An, J.; Zhao, B.; Xu, W. Q. Photoinduced shape conversion and reconstruction of silver nanoprisms. J. Phys. Chem. C 2009, 113, 7025–7030.

40

An, J.; Tang, B.; Zheng, X. L.; Zhou, J.; Dong, F. X.; Xu, S. P.; Wang, Y.; Zhao, B.; Xu, W. Q. Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J. Phys. Chem. C 2008, 112, 15176–15182.

41

Cathcart, N.; Frank, A. J.; Kitaev, V. Silver nanoparticles with planar twinned defects: Effect of halides for precise tuning of plasmon resonance maxima from 400 to >900 nm. Chem. Commun. 2009, 7170–7172.

Nano Research
Pages 843-851
Cite this article:
Liu M, Leng M, Yu C, et al. Selective Synthesis of Hexagonal Ag Nanoplates in a Solution-Phase Chemical Reduction Process. Nano Research, 2010, 3(12): 843-851. https://doi.org/10.1007/s12274-010-0055-z

653

Views

46

Downloads

48

Crossref

N/A

Web of Science

53

Scopus

0

CSCD

Altmetrics

Received: 08 August 2010
Revised: 09 September 2010
Accepted: 09 October 2010
Published: 26 November 2010
© The Author(s) 2010

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return