AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,000.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes

Hua Cheng1,2Zhou Guang Lu1,2Jian Qiu Deng1C.Y. Chung1Kaili Zhang3Yang Yang Li1( )
Department of Physics and Materials ScienceCity University of Hong Kong, HKSAR, Hong KongChina
School of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083China
Department of Manufacturing Engineering and Engineering ManagementCity University of Hong Kong, HKSAR, Hong KongChina
Show Author Information

Graphical Abstract

Abstract

The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries. In this article, we report a simple strategy to considerably improve the high rate capability of Co3O4 nanowire array electrodes by uniformly loading Ag nanoparticles onto the surfaces of the Co3O4 nanowires via the silver-mirror reaction. The highly electrically conductive silver nanoparticles function as a network for the facile transport of electrons between the current collectors (Ti substrates) and the Co3O4 active materials. High capacity as well as remarkable rate capability has been achieved through this simple approach. Such novel Co3O4–Ag composite nanowire array electrodes have great potential for practical applications in pseudo-type supercapacitors as well as in lithium ion batteries.

References

1
Goodenough, J. B.; Abruña, H. D.; Buchanan, M. V. Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences Workshop on Electrical Energy Storage [Online], 2007 Apr 04. US Department of Energy. http://www.sc.doe.gov/bes/reports/abstracts.html#EES2007 (accessed September 6, 2010).https://doi.org/10.2172/935429
2

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

3

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

4

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

5

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

6

Zheng, M. B.; Cao, J.; Liao, S. T.; Liu, J. S.; Chen, H. Q.; Zhao, Y.; Dai, W. J.; Ji, G. B.; Cao, J. M.; Tao, J. Preparation of mesoporous Co3O4 nanoparticles via solid–liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. J. Phys. Chem. C 2009, 113, 3887–3894.

7

Nam, K. T.; Kim, D.W.; Yoo, P. J.; Chiang, C.Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

8

Kim, H. K.; Seong, T. Y.; Lim, J. H.; Cho, W. I.; Yoon, Y. S. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. J. Power Sources 2001, 102, 167–171.

9

Deng, M. J.; Huang, F. L.; Sun, I. W.; Tsai, W. T.; Chang, J. K. An entirely electrocemical preparation of a nanostructured cobalt oxide electrode with superior redox activity. Nanotechnology 2009, 20, 175602.

10

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

11

Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J. Power Sources 2009, 194, 1194–1201.

12

Ahn, H. J.; Seong, T. Y. Effect of Pt nanostructures on the electrochemical properties of Co3O4 electrodes for micro-electrochemical capacitors. J. Alloy. Comp. 2009, 478, L8–L11.

13

Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

14

Liu, J.; Xia, H.; Lu, L.; Xue, D. F. Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J. Mater. Chem. 2010, 20, 1506–1510.

15

Guo, B.; Li, C. S.; Yuan, Z. Y. Nanostructured Co3O4 materials: Synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries. J. Phys. Chem. C 2010, 114, 12805–12817.

16

Lu, Y.; Wang, Y.; Zou, Y. Q.; Jiao, Z.; Zhao, B.; He, Y. Q.; Wu, M. H. Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries. Electrochem. Commun. 2010, 12, 101–105.

17

Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617–623.

18

Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.

19

Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C; Lin, J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

20

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

21

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

22

Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z.Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.

23

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

24

Li, Y. G.; Tan, B.; Wu, Y. Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 2006, 128, 14258–14259.

25

Gao, Y. Y.; Chen, S. L.; Cao, D. X.; Wang, G. L.; Yin, J. L. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 2010, 195, 1757–1760.

26

Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

27

Ramana, C. V.; Zaghib, K.; Julien, C. M. Highly oriented growth of pulsed-laser deposited LiNi0.8Co0.2O2 films for application in microbatteries. Chem. Mater. 2006, 18, 1397–1400.

28

Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

29

Chen, G. Y.; Song, X. Y.; Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid-State Lett. 2006, 9, A295–A298.

Nano Research
Pages 895-901
Cite this article:
Cheng H, Lu ZG, Deng JQ, et al. A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes. Nano Research, 2010, 3(12): 895-901. https://doi.org/10.1007/s12274-010-0063-z

654

Views

55

Downloads

163

Crossref

N/A

Web of Science

171

Scopus

0

CSCD

Altmetrics

Received: 06 September 2010
Revised: 16 October 2010
Accepted: 20 October 2010
Published: 26 November 2010
© The Author(s) 2010

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return