AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A Facile One-Step Synthesis of TiO2/Graphene Composites for Photodegradation of Methyl Orange

Haijiao Zhang1Panpan Xu1Guidong Du1Zhiwen Chen1Kokyo Oh2Dengyu Pan1Zheng Jiao1( )
Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444China
Center for Environmental Science in Saitama914 KamitanadareKazo, SaitamaJapan
Show Author Information

Graphical Abstract

Abstract

TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.

Electronic Supplementary Material

Download File(s)
nr-4-3-274_ESM.pdf (433.4 KB)

References

1

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental applications of semiconductor photocatalysts. Chem. Rev. 1995, 95, 69–96.

2

Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H. Photo-catalytic decomposition of bisphenol A in water using composite TiO2–zeolite sheets prepared by a papermaking technique. Environ. Sci. Technol. 2003, 37, 1048–1051.

3

Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1–21.

4

Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N. Effect of transition metal ions on the TiO2-assisted photo-degradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 2002, 106, 318–324.

5

Paola, A. D.; Marci, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2002, 106, 637–645.

6

Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816.

7

Mu, W.; Herrmann, J. M.; Pichat, P. Room temperature photo-catalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 1989, 3, 73–84.

8

Robert, D.; Piscopo, A.; Heintz, O.; Weber, J. V. Photo-catalytic detoxifcation with TiO2 supported on glass-fbre by using artifcial and natural light. Catal. Today 1999, 54, 291–296.

9

Fernández, A.; Lassaletta, G.; Jiménez, V. M.; Justo, A.; González-Elipe, A. R.; Herrmann, J. -M.; Tahiri, H.; Ait-Ichou, Y. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photo-catalytic activity in water purifcation. Appl. Catal. B: Environ. 1995, 7, 49–63.

10

Minero, C.; Catozzo, F.; Pelizzetti, E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir 1992, 8, 481–486.

11

Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem. 1995, 99, 9986–9991.

12

Tanguay, J. F.; Suib, S. L.; Coughlin, R. W. Dichloro-methane photodegradation using titanium catalysts. J. Catal. 1989, 117, 335–347.

13

Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.

14

Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. -K.; Wong, P. -K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A: Gen. 2005, 289, 186–189.

15

Liu, B.; Zeng, H. C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 2008, 20, 2711–2719.

16

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

17

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

18
Charlier, J. C.; Eklund, P. C.; Zhu, J.; Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. In Topics in Applied Physics; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin (Heidelberg), 2008; pp. 673–709.https://doi.org/10.1007/978-3-540-72865-8_21
19

Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

20

Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

21

Akturk, A.; Goldsman, N. Electron transport and full-band electron–phonon interactions in graphene. J. Appl. Phys. 2008, 103, 053702.

22

Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514.

23

Williams, G.; Seger, B.; Kamat, P. V. TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

24

Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J. Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

25

Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25–graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

26

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

27

Akhavan, O. The effect of heat treatment on formation of graphene thin flms from graphene oxide nanosheets. Carbon 2010, 48, 509–519

28

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D. Chemical analysis of graphene oxide flms after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

29

Akhavan, O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 2011, 49, 11–18.

30

Akhavan, O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010, 4, 4174–4180.

31

Lambert, T. N.; Chavez, C. A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N. S.; Ambrosini, A. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 2009, 113, 19812–19823.

32

Falaras, P.; Hugot-Le Goff, A.; Bernard, M. C.; Xagas, A. Characterization by resonance Raman spectroscopy of sol–gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application. Sol. Energy Mater. Sol. Cells 2000, 64, 167–182.

33

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

34

Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.

35

Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114, 12955–12959.

36

Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.

37

Kim, K.; Choi, J.; Lee, H.; Lee, H. K.; Kang, T. H.; Han, Y. H.; Lee. B. C.; Kim, S.; Kim, B. Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-SiC(0001). J. Phys. Chem. C 2008, 112, 13062–13064.

Nano Research
Pages 274-283
Cite this article:
Zhang H, Xu P, Du G, et al. A Facile One-Step Synthesis of TiO2/Graphene Composites for Photodegradation of Methyl Orange. Nano Research, 2011, 4(3): 274-283. https://doi.org/10.1007/s12274-010-0079-4

662

Views

172

Crossref

N/A

Web of Science

187

Scopus

0

CSCD

Altmetrics

Received: 26 August 2010
Revised: 10 November 2010
Accepted: 11 November 2010
Published: 01 March 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010
Return