Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a comprehensive theoretical investigation of the catalytic reaction mechanisms of propene epoxidation on gold nanoclusters using density functional theory (DFT). We have shown that water acts as a catalytic promoter for propene epoxidation on gold catalysts. Even without reducible supports, hydroperoxyl (OOH) and hydroxyl (OH) radicals are readily formed on small-size gold clusters from co-adsorbed H2O and O2, with energy barriers as low as 4-6 kcal/mol (1 cal = 4.186 J). Propene epoxidation occurs easily through reactions between C3H6 and the weakened O-O bond of the OOH radicals on the surfaces of gold clusters.
Haruta, M.; Kabayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃. Chem. Lett. 1987, 16, 405-408.
Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153-166.
Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566-575.
Huang, J. H.; Akita, T.; Ohashi, H.; Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B 2010, 95, 430-438.
Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Selective Propene epoxidation on immobilized Au6-10 clusters: The Effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 2009, 48, 1467-1471.
Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun. 2009, 352-354.
Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem. Int. Ed. 2009, 48, 7862-7866.
Delley, B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 1990, 92, 508-517.
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 113, 155125.
Huang, W.; Wang, L. -S. Au10-: Isomerism and structure-dependent O2 reactivity. Phys. Chem. Chem. Phys. 2009, 11, 2663-2667.
Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith D.; Andzelm. J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci. 2003, 28, 250-258.
Yoon, B.; Häkkinen, H.; Landman, U. Interaction of O2 with gold clusters: Molecular and dissociative adsorption. J. Phys. Chem. A 2003, 107, 4066-4071.
López, N.; Nørskov, J. K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262-11263.
Mills, G.; Gordon, M. S.; Metiu, H. The adsorption of molecular oxygen on neutral and negative Aun clusters (n = 2-5). Chem. Phys. Lett. 2002, 359, 493-499
Zhai, H. J.; Kiran, B.; Dai, B. Li, J. Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n- (n = 0-3). J. Am. Chem. Soc. 2005, 127, 12098-12106.
Zhai, H. J.; Pan, L. L.; Dai, B.; Li, J.; Wang, L. S. Chemisorption-induced structural changes and transition from chemisorption to physisorption in Au6(CO)n- (n = 4-9). J. Phys. Chem. C 2008, 112, 11920-11928.
Yang, X. -F.; Wang, Y. -L.; Zhao, Y. -F.; Wang, A. -Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038-3043.
Bongiorno, A.; Landman, U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys. Rev. Lett. 2005, 95, 106102.
Xu, Z.; Xiao, F. S.; Purnell, S. K.; Alexeev, O.; Kawl, S.; Deutsch, S. E.; Gates, B. C. Size-dependent catalytic activity of supported metal-clusters. Nature 1994, 372, 346-348.
Ajo, H. M.; Bondzie, V. A.; Campbell, C. T. Propene adsorption on gold particles on TiO2(110). Catal. Lett. 2002, 78, 359-368.
Nijhuis, T. A.; Sacaliuc, E.; Beale, A. M.; van der Eerden, A. M. J.; Schouten, J. C.; Weckhuysen, B. M. Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene. J. Catal. 2008, 258, 256-264.
Yang, X. F.; Wang, A. Q.; Wang, X. D.; Zhang, T.; Han, K.; Li, J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde. J. Phys. Chem. C 2009, 113, 20918-20926.
Yang, X. F.; Wang, A. Q.; Wang, Y. L.; Zhang, T.; Li, J. Unusual selectivity of gold catalysts for hydrogenation of 1, 3-butadiene toward cis-2-butene: A joint experimental and theoretical investigation. J. Phys. Chem. C 2010, 114, 3131-3139.
Pei, Y.; Shao, N.; Gao, Y.; Zeng, X. C. Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. ACS Nano 2010, 4, 2009-2020.
Epling, W. S.; Peden, C. H. F.; Henderson, M. A.; Diebold, U. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 1998, 412, 333-343.
Wang, H. Y.; Schneider, W. F. Nature and role of surface carbonates and bicarbonates in CO oxidation over RuO2. Phys. Chem. Chem. Phys. 2010, 12, 6367-6374.
Furche, F.; Ahlrichs, R.; Weis, P.; Jacob, C.; Gilb, S.; Bierweiler, T.; Kappes, M. M. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 2002, 117, 6982-6990.
Häkkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H. J.; Wang, L. S. On the electronic and atomic structures of small AuN- (N = 4-14) clusters: A photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 2003, 107, 6168-6175.
Ji, M.; Gu, X.; Li, X.; Gong, X.; Li, J.; Wang, L. S. Experimental and Theoretical Investigation of the Electronic and Geometrical Structures of the Au32 Cluster. Angew. Chem. Int. Ed. 2005, 44, 7119-7123.
Wells, D. H.; Delgass, W. N.; Thomson, K. T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study. J. Am. Chem. Soc. 2004, 126, 2956-2962.
Vayssilov, G. N.; van Santen, R. A. Catalytic activity of titanium silicalites: A DFT study. J. Catal. 1998, 175, 170-174.
Sinclair, P. E.; Catlow, C. R. A. Quantum chemical study of the mechanism of partial oxidation reactivity in titanosilicate catalysts: Active site formation, oxygen transfer, and catalyst deactivation. J. Phys. Chem. B 1999, 103, 1084-1095.
Munakata, H.; Oumi, Y.; Miyamoto, A. A DFT study on peroxo-complex in titanosilicate catalyst: Hydrogen peroxide activation on titanosilicalite-1 catalyst and reaction mechanisms for catalytic olefin epoxidation and for hydroxylamine formation from ammonia. J. Phys. Chem. B 2001, 105, 3493-3501.
Joshi, A. M.; Delgass, W. N.; Thomson, K. T. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: A density functional theory study. J. Phys. Chem. B 2006, 110, 2572-2581.
Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252-255.
Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Ed. 2004, 43, 118-121.
Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688-1691.
Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932-934.
Lu, J.; Bravo-Suárez, J. J.; Takahashi, A.; Haruta, M.; Oyama, S. T. In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 2005, 232, 85-95.
Zemichael, F. W.; Palermo, A.; Tikhov, M. S.; Lambert, R. M. Propene epoxidation over K-promoted Ag/CaCO3 catalysts: The effect of metal particle size. Catal. Lett. 2002, 80, 93-98.
de Oliveira, A. L.; Wolf, A.; Schuth, F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts. Catal. Lett. 2001, 73, 157-160.
Roldan, A.; Ricart, J. M.; Illas, F. Origin of the size dependence of Au nanoparticles toward molecular oxygen dissociation. Theor. Chem. Acc. 2009, 123, 119-126.