AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Patterning Nanoroads and Quantum Dots on Fluorinated Graphene

Morgana A. Ribas1Abhishek K. Singh1,2Pavel B. Sorokin1Boris I. Yakobson1( )
Department of Mechanical Engineering and Materials Science and Department of ChemistryRice University, HoustonTexas77005USA
Materials Research CentreIndian Institute of ScienceBangalore560012India
Show Author Information

Graphical Abstract

Abstract

Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete "2D-Teflon" CF phase being thermody-namically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

3

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

4

Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

5

Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394-3398.

6

Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

7

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.

8

Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228-232.

9

Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K.; Yakobson, B.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116-122.

10

Cançado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Medeiros-Ribeiro, G.; Enoki, T.; Kobayashi, Y.; Takai, K.; Fukui, K. I.; Dresselhaus, M. S.; Saito, R. et al. Anisotropy of the Raman spectra of nanographite ribbons. Phys. Rev. Lett. 2004, 93, 047403.

11

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

12

Ezawa, M. Metallic graphene nanodisks: Electronic and magnetic properties. Phys. Rev. B 2007, 76, 245415.

13

Ezawa, M. Graphene nanoribbon and graphene nanodisk. Physica E 2008, 40, 1421-1423.

14

Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 2006, 73, 045432.

15

Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912-1915.

16

Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773-2778.

17

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872-876.

18

Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877-880.

19

Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.

20

Sluiter, M. H. F.; Kawazoe, Y. Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene. Phys. Rev. B 2003, 68, 085410.

21

Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

22

Singh, A. K.; Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 2009, 9, 1540-1543.

23

Singh, A. K.; Penev, E. S.; Yakobson, B. I. Vacancy clusters in graphane as quantum dots. ACS Nano 2010, 4, 3510-3514.

24

Balog, R.; Jorgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.

25

Lin, Y.; Ding, F.; Yakobson, B. I. Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 2008, 78, 041402.

26

Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610-613.

27

Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597-4602.

28

Ebert, L. B.; Brauman, J. I.; Huggins, R. A. Carbon monofluoride. Evidence for a structure containing an infinite array of cyclohexane boats. J. Am. Chem. Soc. 1974, 96, 7841-7842.

29

Kita, Y.; Watanabe, N.; Fujii, Y. Chemical composition and crystal structure of graphite fluoride. J. Am. Chem. Soc. 1979, 101, 3832-3841.

30

Mallouk, T.; Bartlett, N. Reversible intercalation of graphite by fluorine: A new bifluoride, C12HF2, and graphite fluorides, CF (5> x > 2). J. Chem. Soc., Chem. Commun. 1983, 103-105.

31

Nakajima, T.; Watanabe, N.; Kameda, I.; Endo, M. Preparation and electrical conductivity of fluorine-graphite fiber intercalation compound. Carbon 1986, 24, 343-351.

32

Panich, A. M. Nuclear magnetic resonance study of fluorine-graphite intercalation compounds and graphite fluorides. Synthetic Met. 1999, 100, 169-185.

33

Touhara, H.; Kadono, K.; Fujii, Y.; Watanabe, N. On the structure of graphite fluoride. Z. Anorg. Allg. Chem. 1987, 544, 7-20.

34

Watanabe, N. Characteristics and applications of graphite fluoride. Physica B & C 1981, 105, 17-21.

35

Rüdorff, W.; Rüdorff, G. Zur Konstitution des Kohlenstoff-Monofluorids. Z. Anorg. Chem. 1947, 253, 281-296.

36

Lagow, R. J.; Badachhape, R. B.; Wood, J. L.; Margrave, J. L. Some new synthetic approaches to graphite-fluorine chemistry. J. Chem. Soc., Dalton Trans. 1974, 1268-1273.

37

Mahajan, V. K.; Badachhape, R. B.; Margrave, J. L. X-ray powder diffraction study of poly(carbon monofluoride), CF1.12. Inorg. Nucl. Chem. Lett. 1974, 10, 1103-1109.

38

Nakajima, T. Synthesis, structure, and physicochemical properties of fluorine-graphite intercalation compounds. In Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Application, Nakajima, T., Ed.; Marcel Dekker: New York, 1995.

39

Dresselhaus, M. S.; Endo, M.; Issi, J. P. Physical properties of fluorine- and fluoride-graphite intercalation compounds. In Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Applications. Nakajima, T., Ed.; Marcel Dekker: New York, 1995.

40

Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406.

41

Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 1998, 296, 188-194.

42

Osuna, S.; Torrent-Sucarrat, M.; Sola, M.; Geerlings, P.; Ewels, C. P.; Lier, G. V. Reaction mechanisms for graphene and carbon nanotube fluorination. J. Phys. Chem. C 2010, 114, 3340-3345.

43

Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952-1958.

44

Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096-1104.

45

Kudin, K. N.; Bettinger, H. F.; Scuseria, G. E. Fluorinated single-wall carbon nanotubes. Phys. Rev. B 2001, 63, 045413.

46

Cheng, S. H.; Zou, K.; Okino, F.; Gutierrez, H. R.; Gupta, A.; Shen, N.; Eklund, P. C.; Sofo, J. O.; Zhu, J. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 2010, 81, 205435.

47

Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001-3005.

48

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

49

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

50

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-15979.

51

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

52

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

53

Köhler, C.; Frauenheim, T. Molecular dynamics simulations of CFx (x = 2, 3) molecules at Si3N4 and SiO2 surfaces. Surf. Sci. 2006, 600, 453-460.

54

Aradi, B.; Hourahine, B.; Frauenheim, Th. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 2007, 111, 5678-5684.

55

Charlier, J. C.; Gonze, X.; Michenaud, J. P. First-principles study of graphite monofluoride (CF)n. Phys. Rev. B 1993, 47, 16162-16168.

56

Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320-330.

57

O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308-319.

58

Lemal, D. M. Perspective on fluorocarbon chemistry. J. Org. Chem. 2004, 69, 1-11.

59

Artyukhov, V. I.; Chernozatonskii, L. A. Structure and layer interaction in carbon monofluoride and graphane: A comparative computational study. J. Phys. Chem. A 2010, 114, 5389-5396.

60

Muñoz, E.; Singh, A. K.; Ribas, M. A.; Penev, E. S.; Yakobson, B. I. The ultimate diamond slab: GraphAne versus graphEne. Diam. Relat. Mat. 2010, 19, 368-373.

61

Dewar, M. J. S. Dougherty, R. C. The PMO Theory of Organic Chemistry; Plenum: New York, 1975.

62

Kudin, K. N. Zigzag graphene nanoribbons with saturated edges. ACS Nano 2008, 2, 516-522.

63

Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineering structures on graphene with adsorbed hydrogen "lines". J. Phys. Chem. C 2010, 114, 3225-3229.

64

Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 2007, 3, 192-196.

65

Recher, P.; Trauzettel, B. Quantum dots and spin qubits in graphene. Nanotechnology 2010, 21, 302001.

66

Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356-358.

67

Matulis, A.; Peeters, F. M. Quasibound states of quantum dots in single and bilayer graphene. Phys. Rev. B 2008, 77, 115423.

68

Lebegue, S.; Klintenberg, M.; Eriksson, O.; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.

69

Ajayan, P. M.; Yakobson, B. I. Material science: Oxygen breaks into carbon world. Nature 2006, 441, 818-819.

70

Flores, M. Z. S.; Autreto, P. A. S.; Legoas, S. B.; Galvao, D. S. Graphene to graphane: A theoretical study. Nanotechnology 2009, 20, 465704.

71
Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. et al. Fluorographene: A two-dimensional counterpart of teflon. Small 2010, in press, DOI: 10.1002/smll.201001555.https://doi.org/10.1002/smll.201001555
Nano Research
Pages 143-152
Cite this article:
Ribas MA, Singh AK, Sorokin PB, et al. Patterning Nanoroads and Quantum Dots on Fluorinated Graphene. Nano Research, 2011, 4(1): 143-152. https://doi.org/10.1007/s12274-010-0084-7

602

Views

121

Crossref

N/A

Web of Science

122

Scopus

0

CSCD

Altmetrics

Received: 21 October 2010
Revised: 18 November 2010
Accepted: 19 November 2010
Published: 14 December 2010
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010
Return