Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A simple one-pot reaction that serves to functionalize graphite nanosheets (graphene) and single-walled carbon nanotubes (SWNTs) with perfluorinated alkyl groups is reported. Free radical addition of 1-iodo-1H, 1H, 2H, 2H-perfluorododecane to ortho-dichlorobenzene suspensions of the carbon nanomaterial is initiated by thermal decomposition of benzoyl peroxide. Similarly, UV photolysis of 1-iodo-perfluorodecane serves to functionalize the carbon materials. Perfluorododecyl-SWNTs, perfluorododecyl-graphene, and perfluorodecyl-graphene are characterized by infrared (IR) and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). The products show enhanced dispersability in CHCl3 as compared to unfunctionalized starting materials. The advantage of this one-pot functionalization procedure lies in the use of pristine graphite as starting material thereby avoiding the use of harsh oxidizing conditions.
Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Dyke, C. A.; Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 2004, 108, 11151–11159.
Adams, D. J.; Dyson, P. J.; Tavener, S. J. In Chemistry in Alternative Reaction Media. Wiley: Sussex, 2004; pp. 57–71.
Hamilton, C. E.; Ogrin, D.; McJilton, L.; Moore, V. C.; Anderson, R.; Smalley, R. E.; Barron, A. R. Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters. Dalton Trans. 2008, 2937–2944.
Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R. Jr.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotubes amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829.
Fagan, P. J.; Krusic, P. J.; McEwen, C. N.; Lazar, J.; Parker, D. H.; Herron, N.; Wasserman, E. Production of perfluoroalkylated nanospheres from buckminsterfullerene. Science 1993, 262, 404–07.
Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.
Voggu, R.; Biswas, K.; Govindaraj, A.; Rao, C. N. R. Use of fluorous chemistry in the solubilization and phase transfer of nanocrystals, nanorods, and nanotubes. J. Phys. Chem. B 2006, 110, 20752–20755.
Pulikkathara, M. X.; Kuznetsov, O. V.; Peralta, I. R. G.; Wei, X.; Khabashesku, V. N. Medium density polyethylene composites with functionalized carbon nanotubes. Nanotechnol. 2009, 20, 195602–195605.
Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003, 5, 1471–1473.
Liang, F.; Beach, J. M.; Rai, P. K.; Guo, W. H.; Hauge, R. H.; Pasquali, M.; Smalley, R. E.; Billups, W. E. Highly exfoliated water-soluble single-walled carbon nanotubes. Chem. Mater. 2006, 18, 1520–1524.
Armarego, W. L. F.; Perrin, D. D. In Purification of Laboratory Chemicals. Butterworth-Heinemann: Oxford, 4th Ed., 1997; p. 105.
Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301.
Ziegler, K. J.; Gu, Z. N.; Peng, H. Q.; Flor, E. L.; Hauge, R. H.; Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547.
Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462.
Zhang, L.; Zhang, J.; Schmandt, N.; Cratty, J.; Khabashesku, V. N.; Kelly, K. F.; Barron, A. R. AFM and STM characterization of thiol and thiophene functionalized SWNTs: Pitfalls in the use of gold nanoparticles to determine the extent of side-wall functionalization in SWNTs. Chem. Commun. 2005, 5429–5430.
Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.
Chattopadhyay, J.; Mukherjee, A.; Hamilton, C. E.; Kang, J. -H.; Chakraborty, S.; Guo, W. H.; Kelly, K. F.; Barron, A. R.; Billups, W. E. Graphite epoxide. J. Am. Chem. Soc. 2008, 130, 5414–5415.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Chakraborty, S.; Guo, W.; Hauge, R. H.; Billups, W. E. Reductive alkylation of fluorinated graphite. Chem. Mater. 2008, 20, 3134–3136.
Chakraborty, S.; Chattopadhyay, J.; Guo, W. H.; Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 2007, 46, 4486–4488.
819
Views
17
Downloads
39
Crossref
N/A
Web of Science
46
Scopus
0
CSCD
Altmetrics