Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
WS2 nanotubes have been filled and intercalated by molten phase caesium iodide. The presence of caesium iodide inside the WS2 nanotubes has been determined using high-resolution transmission electron microscopy (HRTEM) coupled with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS). Noticeably, a Moiré pattern was observed due to the interference between encapsulated CsI and WS2 layers. The intercalation of CsI into the host concentric WS2 lattices resulted in an increase in the interplanar spacing.
Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.
Ajayan, P. M.; Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 1993, 361, 333–361.
Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green. M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372, 159–162.
Ugarte, D.; Chatelain, A.; de Heer, W. A. Nanocapillarity and chemistry in carbon nanotubes. Science 1996, 274, 1897–1899.
Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2003, 2, 683–688.
Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 1319–1332.
Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326.
Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.
Kertesy, M.; Hoffman, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.
Rosentsveig, R.; Margolin, A.; Feldman, Y.; Popovitz-Biro, R.; Tenne, R. WS2 nanotube bundles and foils. Chem. Mater. 2002, 14, 471–473.
Kelly, A.; Groves, G. W.; Kidd, P. Crystallography and Crystal Defects; Wiley: Chichester, 2nd ed., 2000.
Wypych, F.; Schollhorn, R. 1T MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc., Chem. Commun. 1992, 1386–1388.
Schellenberger, A.; Schlaf, R.; Pettenkofer, C.; Jaegerman, W. Synchrotron-induced surface-photovoltage saturation at intercalated Na/WSe2 interfaces. Phys. Rev. B 1992, 45, 3538–3545.
Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects in carbon nanostructures. Science 1994, 263, 1744–1747.
Zak, A.; Feldman, Y.; Lyakhoviskaya, V.; Leitus, G.; Popovitz-Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124, 4747–4758.
Kreizman, R.; Hong, S. Y.; Sloan, J.; Popovitz-Biro, R.; Albu-Yaron, A.; Tobias, G.; Ballesteros, B.; Davis, B. G.; Green, M. L. H.; Tenne, R. Core–shell PbI2@WS2 inorganic nanotubes from capillary wetting. Angew. Chem. Int. Ed. 2009, 48, 1230–1233.
1064
Views
34
Downloads
14
Crossref
N/A
Web of Science
13
Scopus
0
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.