AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Energy Dissipation and Transport in Nanoscale Devices

Department of Electrical and Computer EngineeringMicro and Nanotechnology Lab and Beckman InstituteUniversity of Illinois Urbana-ChampaignUrbana IL61801USA
Show Author Information

Graphical Abstract

Abstract

Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (~10−8 W) to massive data centers (~109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces.

References

1
EPA Report on Server and Data Center Energy Efficiency [Online]. http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency_study (accessed sep 22, 2009)
2

Pop, E.; Sinha, S.; Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 2006, 94, 1587–1601.

3

Cavin, R.; Zhirnov, V.; Herr, D.; Avila, A; Hutchby, J. Research directions and challenges in nanoelectronics. J. Nanopart. Res. 2006, 8, 841–858.

4

Haensch, W.; Nowak, E. J.; Dennard, R. H.; Solomon, P. M.; Bryant, A.; Dokumaci, O. H.; Kumar, A.; Wang, X.; Johnson, J. B.; Fischetti, M. V. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 2006, 50, 339–361.

5
Intel products [Online]. http://ark.intel.com/ (accessed sep 22, 2009)
6
PC Energy Report 2009 [Online]. http://www.climatesavers-computing.org (accessed sep 22, 2009)
7
The Carbon Footprint of Email Spam Report [Online]. http://www.mcafee.com (accessed sep 22, 2009)
8
Energy & Environment Department at LBNL [Online]. http://eed.llnl.gov/flow/02flow.php (accessed sep 22, 2009)
9

Roy, K.; Prasad, S. Low-power CMOS VLSI Circuit Design; Wiley-VCH: Weinheim 2000.

10

Hanson, S.; Zhai, B.; Bernstein, K.; Blaauw, D.; Bryant, A.; Chang, L.; Das, K. K.; Haensch, W.; Nowak, E. J.; Sylvester, D. M. Ultralow-voltage minimum-energy CMOS. IBM J. Res. Dev. 2006, 50, 469–490.

11

Zhai, B.; Blaauw, D.; Sylvester, D.; Flautner, K. The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE T. VLSI Syst. 2005, 13, 1239–1252.

12

Akinwande, D.; Liang, J.; Chong, S.; Nishi, Y.; Wong, H. S. P. Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection. J. Appl. Phys. 2008, 104, 124514.

13

Jenkins, K. A.; Rim, K. Measurement of the effect of self-heating in strained-silicon MOSFETs. IEEE Electr. Device L. 2002, 23, 360–362.

14

Tenbroek, B.; Lee, M. S. L.; Redman-White, W.; Bunyan, R. J. T.; Uren, M. J. Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques. IEEE Trans. Electron Dev. 1996, 43, 2240–2248.

15

Clemente, S. Transient thermal response of power semi-conductors to short power pulses. IEEE Trans. Power Electr. 1993, 8, 337–341.

16

Yan, H.; Song, D.; Mak, K. F.; Chatzakis, I.; Maultzsch, J.; Heinz, T. F. Time-resolved Raman spectroscopy of optical phonons in graphite: Phonon anharmonic coupling and anomalous stiffening. Phys. Rev. B 2009, 80, 121403.

17

Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051.

18

Letcher, J. J.; Kang, K.; Cahill, D. G.; Dlott, D. D. Effects of high carrier densities on phonon and carrier lifetimes in Si by time-resolved anti-Stokes Raman scattering. Appl. Phys. Lett. 2007, 90, 252104.

19

Sinha, S.; Schelling, P. K.; Phillpot, S. R.; Goodson, K. E. Scattering of g-process longitudinal optical phonons at hotspots in silicon. J. Appl. Phys. 2005, 97, 023702.

20

Ledgerwood, M. L.; van Driel, H. M. Picosecond phonon dynamics and self-energy effects in highly photoexcited germanium. Phys. Rev. B 1996, 54, 4926–4935.

21
Ioffe Institute [Online]. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html (accessed sep 22, 2009)
22

Koswatta, S. O.; Lundstrom, M. S.; Nikonov, D. E. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. Nano Lett. 2007, 7, 1160–1164.

23

Buttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 1986, 33, 3020–3026.

24

Das, M. P.; Green, F. Landauer formula without Landauer's assumptions. J. Phys. -Condens. Mat. 2003, 15, 687–693.

25

Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.

26

Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2006.

27

Lake, R.; Datta, S. Energy balance and heat exchange in mesoscopic systems. Phys. Rev. B 1992, 46, 4757–4763.

28

Ouyang, Y.; Guo, J. Heat dissipation in carbon nanotube transistors. Appl. Phys. Lett. 2006, 89, 183122.

29

Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Ustunel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen, P. L. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 2004, 4, 517–520.

30

Pop, E.; Mann, D.; Goodson, K.; Dai, H. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.

31

Liao, A.; Zhao, Y.; Pop, E. Avalanche-induced current enhancement in semiconducting carbon nanotubes. Phys. Rev. Lett. 2008, 101, 256804.

32

Chen, Y. -C.; Zwolak, M.; Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 2003, 3, 1691–1694.

33

Segal, D.; Nitzan, A. Heating in current carrying molecular junctions. J. Chem. Phys. 2002, 117, 3915–3927.

34

Galperin, M.; Saito, K.; Balatsky, A. V.; Nitzan, A. Cooling mechanisms in molecular conduction junctions. Phys. Rev. B 2009, 80, 115427.

35

Galperin, M.; Ratner, M. A.; Nitzan, A. Molecular transport junctions: Vibrational effects. J. Phys. -Condens. Mat. 2007, 103201.

36

Pop, E.; Mann, D.; Cao, J.; Wang, Q.; Goodson, K. E.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.

37

D'Agosta, R.; Sai, N.; Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 2006, 6, 2935–2938.

38

Koswatta, S. O.; Lundstrom, M. S.; Nikonov, D. E. Influence of phonon scattering on the performance of p–i–n band-to-band tunneling transistors. Appl. Phys. Lett. 2008, 92, 043125.

39

Pop, E.; Rowlette, J.; Dutton, R. W.; Goodson, K. E. Joule heating under quasi-ballistic transport conditions in bulk and strained silicon devices. In Intl. Conf. on Simulation of Semic. Proc. and Dev. (SISPAD), Tokyo, Japan, 2005, pp. 307–310.

40

Stettler, M. A.; Alam, M. A.; Lundstrom, M. S. A critical examination of the assumptions underlying macroscopic transport equations for silicon devices. IEEE Trans. Electron Dev. 1993, 40, 733–740.

41

Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.

42

Mahan, G. D.; Woods, L. M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 1998, 80, 4016–4019.

43

Pipe, K. P.; Ram, R. J.; Shakouri, A. Internal cooling in a semiconductor laser diode. IEEE Photonic Tech. L. 2002, 14, 453–455.

44

Shakouri, A.; Bowers, J. E. Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 1997, 71, 1234–1236.

45

Shakouri, A.; Lee, E. Y.; Smith, D. L.; Narayanamurti, V.; Bowers, J. E. Thermoelectric effects in submicron heterostructure barriers. Microscale Therm. Eng. 1998, 2, 37–47.

46

Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566

47

Wachutka, G. K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aid. Des. 1990, 9, 1141–1149.

48

Lindefelt, U. Heat generation in semiconductor devices. J. Appl. Phys. 1994, 75, 942–957.

49

Sverdrup, P. G.; Ju, Y. S.; Goodson, K. E. Sub-continuum simulations of heat conduction in silicon-on-insulator transistors. J. Heat Transf. 2001, 123, 130–137.

50

Lai, J.; Majumdar, A. Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J. Appl. Phys. 1996, 79, 7353–7361.

51

Pop, E.; Dutton, R. W.; Goodson, K. E. Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 2004, 96, 4998–5005.

52

Ju, Y. S.; Goodson, K. E. Phonon scattering in silicon thin films with thickness of order 100 nm. Appl. Phys. Lett. 1999, 74, 3005–3007.

53

Mazumder, S.; Majumdar, A. Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Trans. 2001, 123, 749–759.

54

Henry, A. S.; Chen, G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanos. 2008, 5, 141–152.

55

Fischetti, M. V.; Neumayer, D. A.; Cartier, E. A. Effective electron mobility in Si inversion layers in MOS systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 2001, 90, 4587–4608.

56

Artaki, M.; Price, P. J. Hot phonon effects in silicon field-effect transistors. J. Appl. Phys. 1989, 65, 1317–1320.

57

Lugli, P.; Goodnick, S. M. Nonequilibrium longitudinal-optical phonon effects in GaAs–AlGaAs quantum wells. Phys. Rev. Lett. 1987, 59, 716–719.

58

Jacoboni, C.; Reggiani, L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 1983, 55, 645–705.

59

Fischetti, M. V.; Laux, S. E. Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 1988, 38, 9721–9745.

60

Pop, E.; Dutton, R. W.; Goodson, K. E. Monte Carlo simulation of Joule heating in bulk and strained silicon. Appl. Phys. Lett. 2005, 86, 082101.

61

Rowlette, J. A; Goodson, K. E. Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Dev. 2008, 55, 220–232.

62

Sinha, S.; Pop, E.; Dutton, R. W.; Goodson, K. E. Non-equilibrium phonon distributions in sub-100 nm silicon transistors. J. Heat Transf. 2006, 128, 638–647.

63

Raleva, K.; Vasileska, D.; Goodnick, S. M.; Nedjalkov, M. Modeling thermal effects in nanodevices. IEEE Trans. Electron Dev. 2008, 55, 1306–1316.

64

Vasileska, D.; Raleva, K.; Goodnick, S. M. Modeling heating effects in nanoscale devices: The present and the future. J. Comput. Electron. 2008, 7, 66–93.

65

Lundstrom, M.; Ren, Z. Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Dev. 2002, 49, 133–141.

66

Wang, Y.; Cheung, P.; Oates, A.; Mason, P. Ballistic phonon enhanced NBTI. In IEEE International Reliability Physics Symposium (IRPS), Phoenix, USA, 2007, pp. 258–263.

67

Rego, L. G. C.; Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 1998, 81, 232–235.

68

Schwab, K.; Henriksen, E. A.; Worlock, J. M.; Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 2000, 2000, 974–977.

69

Pop, E.; Mann, D.; Wang, Q.; Goodson, K. E.; Dai, H. J. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100.

70

Bunyan, R. J. T.; Uren, M. J.; Alderman, J. C.; Eccleston, W. Use of noise thermometry to study the effects of self-heating in submicrometer SOI MOSFETs. IEEE Electr. Device L. 1992, 13, 279–281.

71

Mautry, P. G.; Trager, J. Investigation of self-heating in VLSI and ULSI MOSFETs. In Intl. Conf. on Microelectronic Test Struct. , San Diego, CA, USA, 1990, pp. 221–226.

72

Su, L. T.; Chung, J. E.; Antonadis, D. A.; Goodson, K. E.; Flik, M. I. Measurement and modeling of self-heating in SOI NMOSFETs. IEEE Trans. Electron Dev. 1994, 41, 69–75.

73

Jenkins, K. A.; Sun, J. Y. -C. Measurement of IV curve of silicon-on-insulator (SOI) MOSFETs without self-heating. IEEE Electr. Device L. 1995, 16, 145–147.

74

Jin, W.; Liu, W.; Fung, S. K. H.; Chan, P. C. H.; Hu, C. SOI thermal impedance extraction methodology and its significance for circuit simulation. IEEE Trans. Electron Dev. 2001, 48, 730–736.

75

Lee, T. -Y.; Fox, R. M. Extraction of thermal resistance for fully-depleted SOI MOSFETs. In IEEE Int. SOI Conf. , Nara, Japan, 1995, pp. 78–79.

76

Reyboz, M.; Daviot, R.; Rozeau, O.; Martin, P.; Paccaud, M. Compact modeling of the self heating effect in 120 nm multifinger body-contacted SOI MOSFETs for RF circuits. In IEEE Int. SOI Conf. , 2004, pp. 159–161.

77

Maune, H.; Chiu, H. -Y.; Bockrath, M. Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phys. Lett. 2006, 89, 013109.

78

Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology 2008, 19, 295202.

79

Shi, L.; Zhou, J.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phys. 2009, 105, 104306.

80

Yovanovich, M. M.; Culham, J. R.; Teertstra, P. Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks. IEEE Trans. Compon. Hybr. 1998, 21, 168–176.

81

Joy, R. C.; Schlig, E. S. Thermal properties of very fast transistors. IEEE Trans. Electron Dev. 1970, 17, 586–594.

82
Micro Heat Transfer Lab (U. Waterloo) [Online]. http://www.mhtl.uwaterloo.ca/RScalculators.html (accessed sep 22, 2009).
83

Darwish, A. M.; Bayba, A. J.; Hung, H. A. Accurate determination of thermal resistance of FETs. IEEE Trans. Microw. Theory 2005, 53, 306–313.

84

Rinaldi, N. On the modeling of the transient thermal behavior of semiconductor devices. IEEE Trans. Electron Dev. 2001, 48, 2796–2802.

85

Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

86

Steiner, M.; Freitag, M.; Perebeinos, V.; Tsang, J. C.; Small, J. P.; Kinoshita, M.; Yuan, D.; Liu, J.; Avouris, P. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nat. Nanotechnol. 2009, 4, 320–324.

87

Reifenberg, J. P.; Kencke, D. L.; Goodson, K. E. The impact of thermal boundary resistance in phase-change memory devices. IEEE Electr. Device L. 2008, 29, 1112–1114.

88

Chen, I. R.; Pop, E. Compact thermal model for vertical nanowire phase-change memory cells. IEEE Trans. Electron Dev. 2009, 56, 1523–1528.

89

Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang, J. C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009, 9, 1883–1888.

90

Chen, Z.; Jang, W.; Bao, W.; Lau, C. N.; Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910.

91

Amerasekera, A.; Duvvury, C. ESD in Silicon Integrated Circuits, 2nd Edn.; Wiley-VCH: Weinheim, 2002.

92

Jenkins, K. A.; Franch, R. L. Impact of self-heating on digital SOI and strained-silicon CMOS circuits. In IEEE Int. SOI Conf. , Newport Beach, CA, USA, 2003, pp. 161–163.

93

Banerjee, K.; Amerasekera, A.; Cheung, N.; Hu, C. High-current failure model for VLSI interconnects under short-pulse stress conditions. IEEE Electr. Device L. 1997, 18, 405–407.

94

Dwyer, V. M.; Franklin, A. J.; Campbell, D. S. Thermal failure in semiconductor devices. Solid-State Electron. 1990, 33, 553–560.

95

Min, Y. J.; Palisoc, A. L.; Lee, C. C. Transient thermal study of semiconductor devices. IEEE Trans. Compon. Hybr. 1990, 13, 980–988.

96

Castro Neto, A.; Guinea, F.; Miguel, N. Drawing conclusions from graphene. Phys. World 2006, 19, 33–37.

97

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer: Berlin, 2001.

98

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

99

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

100

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

101

Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

102

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

103

Yu, C.; Shi, L.; Yao, Z.; Li, D.; Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 2005, 5, 1842–1846.

104

Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.

105

Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

106

Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.

107

Kuroda, M. A.; Cangellaris, A.; Leburton, J. -P. Nonlinear transport and heat dissipation in metallic carbon nanotubes. Phys. Rev. Lett. 2005, 95, 266803.

108

Hasan, S.; Alam, M. A.; Lundstrom, M. S. Simulation of carbon nanotube FETs including hot-phonon and self-heating effects. IEEE Trans. Electron Dev. 2007, 54, 2352–2361.

109

Perebeinos, V.; Tersoff, J.; Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 2005, 94, 086802.

110

Wang, X.; Zhang, L.; Lu, Y.; Dai, H.; Kato, Y. K.; Pop, E. Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Appl. Phys. Lett. 2007, 91, 261102.

111

Mann, D.; Kato, Y. K.; Kinkhabwala, A.; Pop, E.; Cao, J.; Wang, X.; Zhang, L.; Wang, Q.; Guo, J.; Dai, H. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 33–38.

112

Mann, D.; Pop, E.; Cao, J.; Wang, Q.; Goodson, K. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. B 2006, 110, 1502–1505.

113

Petrov, A. G.; Rotkin, S. V. Energy relaxation of hot carriers in single-wall carbon nanotubes by surface optical phonons of the substrate. JETP Lett. 2006, 84, 156–160.

114

Rotkin, S. V.; Perebeinos, V.; Petrov, A. G.; Avouris, P. An essential mechanism of heat dissipation in carbon nanotube electronics. Nano Lett. 2009, 9, 1850–1855.

115

Fratini, S.; Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 2008, 77, 195415.

116

Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-κ/metal-gate stack and its MOSFET characteristics. IEEE Electr. Device L. 2004, 25, 408–410.

117

Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

118

Xiong, F.; Liao, A.; Pop, E. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 2009, 95, 243103.

119

Deshpande, V. V.; Hsieh, S.; Bushmaker, A. W.; Bockrath, M.; Cronin, S. B. Spatially resolved temperature measurements of electrically heated carbon nanotubes. Phys. Rev. Lett. 2009, 102, 105501.

120

Hsu, I. K.; Kumar, R.; Bushmaker, A.; Cronin, S. B.; Pettes, M. T.; Shi, L.; Brintlinger, T.; Fuhrer, M. S.; Cumings, J. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 2008, 92, 063119.

121

Huang, X. Y.; Zhang, Z. Y.; Liu, Y.; Peng, L. M. Analytical analysis of heat conduction in a suspended one-dimensional object. Appl. Phys. Lett. 2009, 95, 143109.

122

Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.

123
Ong, Z. -Y.; Pop, E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2009, in press, http://arxiv.org/abs/0910.2747.https://doi.org/10.1103/PhysRevB.81.155408
124

Plombon, J. J.; Andideh, E.; Dubin, V. M.; Maiz, J. Influence of phonon, geometry, impurity, and grain size on copper line resistivity. Appl. Phys. Lett. 2006, 89, 113124.

125

Steinhögl, W.; Schindler, G.; Steinlesberger, G.; Engelhardt, M. Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 2002, 66, 075414.

126

Steinhögl, W.; Schindler, G.; Steinlesberger, G.; Traving, M.; Engelhardt, M. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 2005, 97, 023706.

127

Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

128

McConnell, A. D.; Uma, S.; Goodson, K. E. Thermal conductivity of doped polysilicon layers. J. Microelectromech. S. 2001, 10, 360–369.

129

Srivastava, G. P. Theory of thermal conduction in nonmetals. MRS Bull. 2001, 445–450.

130

Glassbrenner, C. J.; Slack, G. A. Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 1964, 134, A1058–A1069.

131

Martin, P.; Aksamija, Z.; Pop, E.; Ravaioli, U. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 2009, 102, 125503.

132

Liu, W.; Asheghi, M. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperature. J. Appl. Phys. 2005, 98, 123523.

133

Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

134

Chen, R.; Hochbaum, A. I.; Murphy, P.; Moore, J.; Yang, P.; Majumdar, A. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 2008, 101, 105501.

135

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. -K.; Goddard Ⅲ, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

136

Li, B.; Wang, L.; Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 2004, 93, 184301.

137

Saira, O. -P.; Meschke, M.; Giazotto, F.; Savin, A. M.; Mottonen, M.; Pekola, J. P. Heat transistor: Demonstration of gate-controlled electronic refrigeration. Phys. Rev. Lett. 2007, 99, 027203.

138

Dames, C. Solid-state thermal rectification with existing bulk materials. J. Heat Transf. 2009, 131, 061301.

139

Jezowski, A.; Rafalowicz, J. Heat flow asymmetry on a junction of quartz with graphite. Phys. Status Solidi A 1978, 47, 229–232.

140

Marucha, C.; Mucha, J.; Rafalowicz, J. Heat flow rectification in inhomogeneous GaAs. Phys. Status Solidi A 1975, 31, 269–273.

141

Kobayashi, W.; Teraoka, Y.; Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 2009, 95, 171905.

142

Yang, N.; Zhang, G.; Li, B. Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 2008, 93, 243111.

143

Casati, G. Device physics: The heat is on—and off. Nat. Nanotechnol. 2007, 2, 23–24.

144

Roberts, N. A.; Walker, D. G. Monte Carlo study of thermal transport of frequency and direction dependent reflecting boundaries in high Kn systems. In 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, Florida, USA, 2008, pp. 993–998.

145

Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-state thermal rectifier. Science 2006, 314, 1121–1124.

146

Scheibner, R.; Konig, M.; Reuter, D.; Wieck, A. D.; Gould, C.; Buhmann, H.; Molenkamp, L. W. Quantum dot as thermal rectifier. New J. Phys. 2008, 083016.

147

Wang, Z.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N. -H.; Cahill, D. G.; Dlott, D. D. Ultrafast flash thermal conductance of molecular chains. Science 2007, 317, 787–790.

148

Costescu, R. M.; Wall, M. A.; Cahill, D. G. Thermal conductance of epitaxial interfaces. Phys. Rev. B 2003, 67, 054302.

149

Lyeo, H. -K.; Cahill, D. G. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301.

150

Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M. et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2003, 2, 731–734.

151

Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transf. 2008, 130, 052401.

152

Stevens, R. J.; Smith, A. N.; Norris, P. M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transf. 2005, 127, 315–322.

153

Tong, T.; Majumdar, A. Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Instrum. 2006, 77, 104902.

154

Yamane, T.; Nagai, N.; Katayama, S.; Todoki, M. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 2002, 91, 9772–9776.

155

Lee, S. -M.; Cahill, D. G. Heat transport in thin dielectric films. J. Appl. Phys. 1997, 81, 2590–2595.

156

Dames, C.; Chen, G. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 2005, 76, 124902.

157

Kim, E. -K.; Kwun, S. -I.; Lee, S. -M.; Seo, H.; Yoon, J. -G. Thermal boundary resistance at Ge2Sb2Te5/ZnS: SiO2 interface. Appl. Phys. Lett. 2000, 76, 3864–3866.

158

Ge, Z.; Cahill, D. G.; Braun, P.V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 2006, 96, 186101.

159

Gundrum, B. C.; Cahill, D. G.; Averback, R. S. Thermal conductance of metal–metal interfaces. Phys. Rev. B 2005, 72, 245426.

160

Swartz, E. T.; Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.

161
Pop, E. Self-Heating and Scaling of Thin-Body Transistors. Ph. D. Thesis, Stanford Univ., Stanford, CA; 2005. [Online]. http://poplab.ece.illinois.edu (accessed Sep 22, 2009).
162

Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B Condens. Mat. 2002, 323, 67–70.

163

Pop, E; Chui, C. O.; Sinha, S.; Dutton, R.; Goodson, K. Electro-thermal comparison and performance optimization of thin-body SOI and GOI MOSFETs. In Intl. Electron Dev. Mtg. (IEDM), San Francisco CA, USA, 2004, pp. 411–414.

164

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–154.

165

Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Matsue, M.; Rokuta, E.; Otani, S.; Oshima, C. Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation. Surf. Interface Anal. 2005, 37, 133–136.

166

Reifenberg, J. P.; Chang, K. -W.; Panzer, M. A.; Kim, S.; Rowlette, J. A.; Asheghi, M.; Wong, H. S. P.; Goodson, K. E. Thermal boundary resistance measurements for phase-change memory devices. IEEE Electr. Device L. 2010, 31, 56–58.

167

Stoner, R. J.; Maris, H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 1993, 48, 16373–16387.

Nano Research
Pages 147-169
Cite this article:
Pop E. Energy Dissipation and Transport in Nanoscale Devices. Nano Research, 2010, 3(3): 147-169. https://doi.org/10.1007/s12274-010-1019-z

2083

Views

72

Downloads

973

Crossref

N/A

Web of Science

1021

Scopus

0

CSCD

Altmetrics

Received: 22 September 2009
Revised: 26 December 2009
Accepted: 05 January 2010
Published: 18 March 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return