AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Large Scale Photochemical Synthesis of M@TiO2 Nanocomposites (M = Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect

Shao Feng Chen1,Jian Ping Li2,Kun Qian3Wei Ping Xu1Yang Lu1Wei Xin Huang3Shu Hong Yu1( )
Division of Nanomaterials & ChemistryHefei National Laboratory for Physical Sciences at MicroscaleDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China
School of PharmacyAnhui University of Traditional Chinese MedicineHefei230026China
Division of Chemical PhysicsHefei National Laboratory for Physical Sciences at MicroscaleDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China

These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Well-dispersed M@TiO2 (M = Ag, Pd, Au, Pt) nanocomposite particles with a diameter of 200–400 nm can be synthesized on a large scale by a clean photochemical route which does not require any additives using spherical rutile nanoparticles as a support. The sizes of Pt, Au, and Pd nanoparticles formed on the surface of TiO2 particles are about 1 nm, 5 nm, and 5 nm, respectively, and the diameter of Ag nanoparticles is in the range 2–20 nm. Moreover, the noble metal nanoparticles have good dispersity on the particles of the TiO2 support, resulting in excellent catalytic activities. Complete conversion in catalytic CO oxidation is reached at temperatures as low as 333 and 363 K, respectively, for Pt@TiO2 and Pd@TiO2 catalysts. In addition, the antibacterial effects of the as-synthesized TiO2 nanoparticles, silver nanoparticles, and Au@TiO2 and Ag@TiO2 nanocomposites have been tested against Gram-negative Escherichia coli (E. coli) bacteria. The results demonstrate that the presence of the TiO2 matrix enhances the antibacterial effect of silver nanoparticles, and the growth of E. coli can be completely inhibited even if the concentration of Ag in Ag@TiO2 nanocomposite is very low (10 μg/mL).

Electronic Supplementary Material

Download File(s)
nr-3-4-244_ESM.pdf (718.9 KB)

References

1

Ertl, G. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 2008.

2

Huang, S. Y.; Ganesan, P.; Park, S.; Popov B. N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 2009, 131, 13898–13899.

3

Chen, J.; Lim B.; Lee, E. P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

4

Kaya, S.; Üner, D. CO oxidation over mono and bi-metallic sequentially impregnated Pd–Pt catalysts. Turk. J. Chem. 2008, 32, 645–652.

5

Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483.

6

Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.

7

Zhang, Y. W.; Peng, H. S.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 2008, 325, 371–376.

8

Thiel, J.; Pakstis, L.; Buzby, S.; Raffi, M.; Ni, C.; Pochan, D. J.; Shah, S. I. Antibacterial properties of silver-doped titania. Small 2007, 3, 799–803.

9

Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Reversible antimicrobial photoswitching in nanosilver. Small 2009, 5, 341–344.

10

Kim, Y. H.; Kim, C. W.; Cha, H. G.; Lee, D. K.; Jo, B. K.; Ahn, G. W.; Hong, E. S.; Kim, J. C.; Kang, Y. S. Bulklike thermal behavior of antibacterial Ag–SiO2 nanocomposites. J. Phys. Chem. C 2009, 113, 5105–5110.

11

Epling, W. S.; Cheekatamarla, P. K.; Lane, A. M. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams. Chem. Eng. J. 2003, 93, 61–68.

12

Keleher, J.; Bashant, J.; Heldt, N.; Johnson, L.; Keleher, J.; Bashant, J.; Heldt, N.; Johnson, L.; Li, Y. Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J. Microbiol. Biotechnol. 2002, 18, 133–139.

13

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

14

Liu, S. J.; Wu, X. X.; Hu, B.; Gong, J. Y.; Yu, S. H. Novel anatase TiO2 boxes and tree-like structures assembled by hollow tubes: D, L-malic acid-assisted hydrothermal synthesis, growth mechanism, and photocatalytic properties. Cryst. Growth Des. 2009, 9, 1511–1518.

15

Chen, W. J.; Tsai, P. J.; Chen, Y. C. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 2008, 4, 485–491.

16

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

17

Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2—New photochemical processes. Chem. Rev. 2006, 106, 4428–4453.

18

Haruta, H.; Yamada, M.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

19

Haruta, M. Copper, silver and gold in catalysis—Preface. Catal. Today 1997, 36, 1.

20

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281, 1647–1650.

21

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

22

Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

23

Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.

24

Qian, H. S.; Antonietti, M.; Yu, S. H. Hybrid "golden fleece": Synthesis and catalytic performance of uniform carbon nanofibers and silica nanotubes embedded with a high population of noble-metal nanoparticles. Adv. Funct. Mater. 2007, 17, 637–643.

25

Li, S.; Liu, G.; Lian H.; Jia, M.; Zhao, G.; Jiang, D.; Zhang, W. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal. Commun. 2008, 9, 1045–1049.

26

Ko, E. Y.; Park, E. D.; Lee, H. C.; Lee, D.; Kim, S. Supported Pt–Co catalysts for selective CO oxidation in a hydrogen-rich stream. Angew. Chem. Int. Ed. 2007, 46, 734–737.

27

Qian, K.; Sun, H.; Huang, W.; Fang, J.; Lv, S.; He, B.; Jiang, Z.; Wei, S. Restructuring-induced activity SiO2-supported large Au nanoparticles in low-temperature CO oxidation. Chem. Eur. J. 2008, 14, 10595–10602.

28

Qian, K.; Huang, W. X.; Jiang, Z.; Sun, H. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive. J. Catal. 2007, 248, 137–141.

29

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

30

Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/ metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 2004, 126, 3868–3879.

31

Chan, S. C.; Barteau, M. A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Langmuir 2005, 21, 5588–5595.

32

Ohtani, B.; Ogawa, Y.; Nishimoto, S. I. Photocatalytic activity of amorphous-anatase mixture of titanium(Ⅳ) oxide particles suspended in aqueous solutions. J. Phys. Chem. B. 1997, 101, 3746–3742.

33

Pacholski, C.; Kornowski, A.; Weller, H. Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Ed. 2004, 43, 4774–4777.

34

Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes, S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.

35

Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45, 7824–7828.

36

Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 2004, 126, 7790–7791.

37

Wang, D.; Liu, J.; Huo, Q.; Nie, Z.; Lu, W.; Williford, R. E.; Jiang, Y. B. Surface-mediated growth of transparent, oriented, and well-defined nanocrystalline anatase titania films. J. Am. Chem. Soc. 2006, 128, 13670–13671.

38

Swamy, V.; Muddle, B. C. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118.

39

Wang, H. F.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J. X. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. USA. 2005, 102, 15752–15756.

40

Atalic, B.; Üner, D. Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3. J. Catal. 2006, 241, 268–275.

41

Park, J. Y.; Zhang, Y.; Grass, M.; Zhang, T.; Somorjai, G. Tuning of catalytic CO oxidation by changing composition of Rh–Pt bimetallic nanoparticles. Nano Lett. 2008, 8, 673–677.

42

İnce, T.; Uysal, G.; Akın, A. N.; Yıldırım, R. Selective low-temperature CO oxidation over Pt–Co–Ce/Al2O3 in hydrogen-rich streams. Appl. Catal. A 2005, 292, 171–176.

43

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

44

Behm, R. J.; Christmann, K.; Ertl, G.; Van Hove, M. A.; Thiel, P. A.; Weinberg, W. H. Structure of CO adsorbed on Pd (100)—LEED and HREELS analysis. Surf. Sci. 1979, 88, L59–L66.

45

Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol. Rapid Commun. 2004, 25, 1632–1637.

46

Wang Y. M.; Du, G. J.; Liu, H.; Liu, D.; Qin, S. B.; Wang, N.; Hu, C. G.; Tao, X. T.; Jiao, J.; Wang, J. Y.; Wang, Z. L. Nanostructured sheets of Ti–O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 2008, 18, 1131–1137.

47

Niňo-Martínez, N.; Martínez-Castaňón, G. A.; Aragón-Piňa, A.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 2008, 19, 065711.

48

Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.

49

Zhang, H.; Chen, G. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environ. Sci. Technol. 2009, 43, 2905–2910.

50

Hu, B.; Wang, S. B.; Wang, K.; Zhang, M.; Yu, S. H. Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 2008, 112, 11169–11174.

51

Priya, R.; Baiju, K. V.; Shukla, S.; Biju, S.; Reddy, M. L. P.; Patil, K.; Warrier, K. G. K. Comparing ultraviolet and chemical reduction techniques for enhancing photocatalytic activity of silver oxide/silver deposited nanocrystalline anatase titania. J. Phys. Chem. C 2009, 113, 6243–6255.

52

Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 2002, 365, 300–304.

53

Wu, J. M.; Shih, H. C.; Wu, W. T. Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 2005, 17, 105–109.

Nano Research
Pages 244-255
Cite this article:
Chen SF, Li JP, Qian K, et al. Large Scale Photochemical Synthesis of M@TiO2 Nanocomposites (M = Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect. Nano Research, 2010, 3(4): 244-255. https://doi.org/10.1007/s12274-010-1027-z

725

Views

23

Downloads

254

Crossref

N/A

Web of Science

284

Scopus

0

CSCD

Altmetrics

Received: 11 November 2009
Revised: 12 January 2010
Accepted: 28 January 2010
Published: 20 March 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return