AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (555 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In Situ Etching for Total Control Over Axial and Radial Nanowire Growth

Magnus T. Borgström1( )Jesper Wallentin1Johanna Trägårdh1,§Peter Ramvall1Martin Ek2L. Reine Wallenberg2Lars Samuelson1Knut Deppert1
Solid State PhysicsLund UniversityBox 118S-221 00Lund, Sweden
Polymer & Materials Chemistry/nCHREMLund UniversityS-22100Lund, Sweden

§Present Address: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

Show Author Information

Graphical Abstract

Abstract

We report a method using in situ etching to decouple the axial from the radial nanowire growth pathway, independent of other growth parameters. Thereby a wide range of growth parameters can be explored to improve the nanowire properties without concern of tapering or excess structural defects formed during radial growth. We demonstrate the method using etching by HCl during InP nanowire growth. The improved crystal quality of etched nanowires is indicated by strongly enhanced photoluminescence as compared to reference nanowires obtained without etching.

References

1

De Franceschi, S.; van Dam, J. A.; Bakkers, E. P. A. M.; Feiner L. F.; Gurevich, L.; Kouwenhoven, L. P. Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 2003, 83, 344–346.

2

Bryllert, T.; Wernersson, L. E.; Fröberg, L. E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron. Dev. Lett. 2006, 27, 323–325.

3

Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.

4

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

5

Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched "nanotrees" by controlled seeding of multiple branching events. Nat. Mater. 2004, 3, 380–384.

6

Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of Ⅲ-Ⅴ nanowires on group IV substrates. MRS Bull. 2007, 32, 117–122.

7

Regolin, I.; Sudfeld, D.; Luttjohann, S.; Khorenko, V.; Prost, W.; Kastner, J.; Dumpich, G.; Meier, C.; Lorke, A.; Tegude, F. J. Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs. J. Cryst. Growth 2007, 298, 607–611.

8

Borgström, M.; Deppert, K.; Samuelson, L.; Seifert, W. Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: A growth study. J. Cryst. Growth 2004, 260, 18–22.

9

Verheijen, M. A.; Immink, G.; deSmet, T.; Borgstrom, M. T.; Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc. 2006, 128, 1353–1359.

10

Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y. N.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano. Lett. 2007, 7, 921–926.

11

Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 2002, 420, 57–61.

12

Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Fickenscher, M. A.; Perera, S.; Hoang, T. B.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Zhang, X.; Zou, J. Unexpected benefits of rapid growth rate for Ⅲ-Ⅴ nanowires. Nano Lett. 2009, 9, 695–701.

13

Suhara, M.; Nagao, C.; Honji, H.; Miyamoto, Y.; Furuya, K.; Takemura, R. Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes. J. Cryst. Growth 1997, 179, 18–25.

14

Stringfellow, G. B. Organometallic Vapor Phase Epitaxy: Theory and Practice, 2nd edn; Academic Press: San Diego, 1999.

15

Chen, C. H.; Kitamura, M.; Cohen, R. M.; Stringfellow, G. B. Growth of ultrapure InP by atmospheric-pressure organometallic vapor-phase epitaxy. Appl. Phys. Lett. 1986, 49, 963–965.

16

Hsu, C. C.; Yuan, J. S.; Cohen, R. M.; Stringfellow, G. B. Doping studies for InP grown by organometallic vapor-phase epitaxy. J. Cryst. Growth 1986, 74, 535–542.

17

Dick, K. A.; Deppert, K.; Samuelson, L.; Seifert, W. InAs nanowires grown by MOVPE. J. Cryst. Growth 2007, 298, 631–634.

18

Dayeh, S. A.; Yu, E. T.; Wang, D. Ⅲ-Ⅴ nanowire growth mechanism: Ⅴ/Ⅲ ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.

19

Caneau, C.; Bhat, R.; Koza, M.; Hayes, J. R.; Esagui, R. Etching of InP by HCl in an OMVPE Reactor. J. Cryst. Growth 1991, 107, 203–208.

20

Kitatani, T.; Tsuchiya, T.; Shinoda, K.; Aoki, M. In situ etching of InGaAsP/InP by using HCl in an MOVPE reactor. J. Cryst. Growth 2005, 274, 372–378.

21

Magnusson, M. H.; Deppert, K.; Malm, J. O.; Bovin, J. O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999, 12, 45–48.

22

Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34.

23

Algra, R.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.

24

Skromme, B. J.; Stillman, G. E.; Oberstar, J. D.; Chan, S. S. Photoluminescence identification of the C and Be acceptor levels in InP. J. Electron. Mater. 1984, 13, 463–491.

25

Fry, K. L.; Kuo, C. P.; Larsen, C. A.; Cohen, R. M.; Stringfellow, G. B.; Melas, A. OMVPE Growth of InP and Ga0.47In0.53As using ethyldimethylindium. J. Electron. Mater. 1986, 15, 91–96.

26

Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X.; Zou, J. Carrier dynamics and quantum confinement in type II ZB–WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648–654.

27

Bao, J. M.; Bell, D. C.; Capasso, F.; Wagner, J. B.; Martensson, T.; Tragardh, J.; Samuelson, L. Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 2008, 8, 836–841.

28

Okamoto, H.; Massalski, T. B. The Au–C (gold-carbon) system. J. Phase Equil. 1984, 5, 378–379.

29

Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.

Nano Research
Pages 264-270
Cite this article:
Borgström MT, Wallentin J, Trägårdh J, et al. In Situ Etching for Total Control Over Axial and Radial Nanowire Growth. Nano Research, 2010, 3(4): 264-270. https://doi.org/10.1007/s12274-010-1029-x

724

Views

31

Downloads

130

Crossref

N/A

Web of Science

128

Scopus

0

CSCD

Altmetrics

Received: 11 January 2010
Revised: 07 February 2010
Accepted: 07 February 2010
Published: 20 March 2010
© The Author(s) 2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return